Show simple item record

dc.contributor.authorAIKAWA, Y.
hal.structure.identifierAMOR 2012
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierFORMATION STELLAIRE 2012
dc.contributor.authorHERSANT, F.
hal.structure.identifierThe Ohio State University [Columbus] [OSU]
dc.contributor.authorGARROD, R. T.
hal.structure.identifierDepartment of Physics [Ohio State University] [OSU]
hal.structure.identifierOhio State Univ, Dept Astron & Chem, Columbus, OH 43210 USA
dc.contributor.authorHERBST, E.
dc.date.created2012-10-15
dc.date.issued2012-11
dc.identifier.issn0004-637X
dc.description.abstractEnWe investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense molecular cloud core to a protostellar core, by solving a gas-grain reaction network applied to a one-dimensional radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii r <~ 100 AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels infalling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C+, which reacts with CH4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the one-dimensional infall of a fluid parcel at constant disk radii. The species CH3OCH3 and HCOOCH3 increase in abundance in 104-105 yr at the fixed warm temperature; both also have high D/H ratios.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enISM: abundances
dc.subject.enISM: clouds
dc.subject.enstars: formation
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/760/1/40
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.identifier.arxiv1210.2476
bordeaux.journalThe Astrophysical Journal
bordeaux.page40
bordeaux.volume760
bordeaux.peerReviewedoui
hal.identifierhal-00764165
hal.version1
hal.popularnon
hal.audienceInternationale
dc.title.itFrom Prestellar to Protostellar Cores. II. Time Dependence and Deuterium Fractionation
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00764165v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=The%20Astrophysical%20Journal&amp;rft.date=2012-11&amp;rft.volume=760&amp;rft.spage=40&amp;rft.epage=40&amp;rft.eissn=0004-637X&amp;rft.issn=0004-637X&amp;rft.au=AIKAWA,%20Y.&amp;WAKELAM,%20Valentine&amp;HERSANT,%20F.&amp;GARROD,%20R.%20T.&amp;HERBST,%20E.&amp;rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record