Show simple item record

hal.structure.identifierZentrum für Astronomie und Astrophysik [Berlin] [ZAA]
dc.contributor.authorGRENFELL, J. L.
dc.contributor.authorGEBAUER, S.
dc.contributor.authorGODOLT, M.
dc.contributor.authorPALCZYNSKI, K.
dc.contributor.authorRAUER, H.
dc.contributor.authorSTOCK, J.
hal.structure.identifierSSE 2013
dc.contributor.authorVON PARIS, P.
hal.structure.identifierAlfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung = Alfred Wegener Institute for Polar and Marine Research = Institut Alfred-Wegener pour la recherche polaire et marine [AWI]
dc.contributor.authorLEHMANN, R.
hal.structure.identifierSSE 2013
dc.contributor.authorSELSIS, Franck
dc.date.created2013-03-27
dc.date.issued2013
dc.identifier.issn1531-1074
dc.description.abstractEnSpectral characterization of Super-Earth atmospheres for planets orbiting in the Habitable Zone of M-dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of one bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by Rauer et al. (2011). The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex- life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in the terrestrial stratosphere) to smog-dominated ozone production for planets in the Habitable Zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production.
dc.language.isoen
dc.publisherMary Ann Liebert
dc.title.enPotential Biosignatures in Super-Earth Atmospheres II. Photochemical Responses
dc.typeArticle de revue
dc.identifier.doi10.1089/ast.2012.0926
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1303.6804
bordeaux.journalAstrobiology
bordeaux.page415-438
bordeaux.volume13
bordeaux.peerReviewedoui
hal.identifierhal-00832637
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00832637v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astrobiology&rft.date=2013&rft.volume=13&rft.spage=415-438&rft.epage=415-438&rft.eissn=1531-1074&rft.issn=1531-1074&rft.au=GRENFELL,%20J.%20L.&GEBAUER,%20S.&GODOLT,%20M.&PALCZYNSKI,%20K.&RAUER,%20H.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record