Show simple item record

dc.contributor.authorHINCELIN, U.
hal.structure.identifierAMOR 2013
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierCentre de Recherche Astrophysique de Lyon [CRAL]
hal.structure.identifierDépartement d'Astrophysique (ex SAP) [DAP]
hal.structure.identifierLaboratoire d'Etude du Rayonnement et de la Matière en Astrophysique [LERMA]
dc.contributor.authorCOMMERÇON, Benoît
hal.structure.identifierFORMATION STELLAIRE 2013
dc.contributor.authorHERSANT, F.
hal.structure.identifierAMOR 2013
dc.contributor.authorGUILLOTEAU, S.
dc.date.created2013-08-27
dc.date.issued2013
dc.identifier.issn0004-637X
dc.description.abstractEnAn outstanding question of astrobiology is the link between the chemical composition of planets, comets, and other solar system bodies and the molecules formed in the interstellar medium. Understanding the chemical and physical evolution of the matter leading to the formation of protoplanetary disks is an important step for this. We provide some new clues to this long-standing problem using three-dimensional chemical simulations of the early phases of disk formation: we interfaced the full gas-grain chemical model Nautilus with the radiation-magnetohydrodynamic model RAMSES, for different configurations and intensities of magnetic field. Our results show that the chemical content (gas and ices) is globally conserved during the collapsing process, from the parent molecular cloud to the young disk surrounding the first Larson core. A qualitative comparison with cometary composition suggests that comets are constituted of different phases, some molecules being direct tracers of interstellar chemistry, while others, including complex molecules, seem to have been formed in disks, where higher densities and temperatures allow for an active grain surface chemistry. The latter phase, and its connection with the formation of the first Larson core, remains to be modeled.
dc.language.isoen
dc.publisherAmerican Astronomical Society
dc.subject.enAstrophysics
dc.subject.enSolar and Stellar Astrophysics
dc.title.enSurvival of interstellar molecules to prestellar dense core collapse and early phases of disk formation
dc.typeArticle de revue
dc.identifier.doi10.1088/0004-637X/775/1/44
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
dc.identifier.arxiv1307.6868
bordeaux.journalThe Astrophysical Journal
bordeaux.page44
bordeaux.volume775
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-00858261
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00858261v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20Journal&rft.date=2013&rft.volume=775&rft.issue=1&rft.spage=44&rft.epage=44&rft.eissn=0004-637X&rft.issn=0004-637X&rft.au=HINCELIN,%20U.&WAKELAM,%20Valentine&COMMER%C3%87ON,%20Beno%C3%AEt&HERSANT,%20F.&GUILLOTEAU,%20S.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record