Show simple item record

hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
hal.structure.identifierLaboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux [L3AB]
hal.structure.identifierObservatoire aquitain des sciences de l'univers [OASU]
hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierAMOR 2014
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierCentre d'étude spatiale des rayonnements [CESR]
hal.structure.identifierCentre d'étude spatiale des rayonnements [CESR]
dc.contributor.authorVASTEL, C.
dc.contributor.authorAIKAWA, Y.
hal.structure.identifierInstitut de Planétologie et d'Astrophysique de Grenoble [IPAG]
dc.contributor.authorCOUTENS, A.
hal.structure.identifierCentre d'étude spatiale des rayonnements [CESR]
dc.contributor.authorBOTTINELLI, S.
hal.structure.identifierCentre d'étude spatiale des rayonnements [CESR]
hal.structure.identifierCentre d'étude spatiale des rayonnements [CESR]
dc.contributor.authorCAUX, E.
dc.date.created2014
dc.date.issued2014
dc.identifier.issn0035-8711
dc.description.abstractEnIRAS 16293-2422 is a well studied low-mass protostar characterized by a strong level of deuterium fractionation. In the line of sight of the protostellar envelope, an additional absorption layer, rich in singly and doubly deuterated water has been discovered by a detailed multiline analysis of HDO. To model the chemistry in this source, the gas-grain chemical code Nautilus has been used with an extended deuterium network. For the protostellar envelope, we solve the chemical reaction network in infalling fluid parcels in a protostellar core model. For the foreground cloud, we explored several physical conditions (density, cosmic ionization rate, C/O ratio). The main results of the paper are that gas-phase abundances of H2O, HDO and D2O observed in the inner regions of IRAS16293-2422 are lower than those predicted by a 1D dynamical/chemical (hot corino) model in which the ices are fully evaporated. The abundance in the outer part of the envelope present chaotic profiles due to adsorption/evaporation competition, very different from the constant abundance assumed for the analysis of the observations. We also found that the large abundances of gas-phase H2O, HDO and D2O observed in the absorption layer are more likely explained by exothermic surface reactions rather than photodesorption processes.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.subject.enAstrochemistry
dc.subject.enstars: protostars
dc.subject.enISM: abundances
dc.subject.enISM: molecules
dc.subject.enISM: IRAS16293-2422
dc.title.enChemical modelling of water deuteration in IRAS16293-2422
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stu1920
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.identifier.arxiv1410.6366
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page2854-2871
bordeaux.volume445
bordeaux.issue3
bordeaux.peerReviewedoui
hal.identifierhal-01078121
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01078121v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2014&rft.volume=445&rft.issue=3&rft.spage=2854-2871&rft.epage=2854-2871&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=WAKELAM,%20Valentine&VASTEL,%20C.&AIKAWA,%20Y.&COUTENS,%20A.&BOTTINELLI,%20S.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record