Show simple item record

hal.structure.identifierDepartment of Geological Sciences [BYU]
dc.contributor.authorRADEBAUGH, Jani
dc.contributor.authorVENTRA, Dario
hal.structure.identifierJohns Hopkins University Applied Physics Laboratory [Laurel, MD] [APL]
dc.contributor.authorLORENZ, Ralph
hal.structure.identifierJet Propulsion Laboratory [JPL]
dc.contributor.authorFARR, Tom
hal.structure.identifierUnited States Geological Survey [Reston] [USGS]
dc.contributor.authorKIRK, Randolph
hal.structure.identifierDepartment of Astronomy [Ithaca]
dc.contributor.authorHAYES, Alexander
hal.structure.identifierJet Propulsion Laboratory [JPL]
dc.contributor.authorMALASKA, Michael
hal.structure.identifierDepartment of Astronomy [Ithaca]
dc.contributor.authorBIRCH, Sam
hal.structure.identifierArizona State University [Tempe] [ASU]
dc.contributor.authorLIU, Zac Yung-Chun
hal.structure.identifierDepartment of Astronomy [Ithaca]
dc.contributor.authorLUNINE, Jonathan
hal.structure.identifierUniversity of Idaho [Moscow, USA]
dc.contributor.authorBARNES, Jason
hal.structure.identifierESTER - LATMOS
hal.structure.identifierPLANETO - LATMOS
dc.contributor.authorLE GALL, Alice
hal.structure.identifierJet Propulsion Laboratory [JPL]
dc.contributor.authorLOPES, Rosaly
hal.structure.identifierNASA Headquarters
dc.contributor.authorSTOFAN, Ellen
hal.structure.identifierJet Propulsion Laboratory [JPL]
dc.contributor.authorWALL, Stephen
hal.structure.identifierASP 2015
dc.contributor.authorPAILLOU, Philippe
dc.date.conference2015-12-14
dc.description.abstractEnAlluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini’s Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan’s surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary bodies.
dc.language.isoen
dc.title.enAlluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport
dc.typeCommunication dans un congrès
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Astrophysique stellaire et solaire [astro-ph.SR]
bordeaux.pageP12B-01
bordeaux.conference.titleAGU Fall Meeting 2015
bordeaux.countryUS
bordeaux.conference.citySan Francisco
bordeaux.peerReviewedoui
hal.identifierinsu-01248994
hal.version1
hal.invitednon
hal.proceedingsnon
hal.conference.end2015-12-18
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//insu-01248994v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=P12B-01&rft.epage=P12B-01&rft.au=RADEBAUGH,%20Jani&VENTRA,%20Dario&LORENZ,%20Ralph&FARR,%20Tom&KIRK,%20Randolph&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record