The system will be going down for regular maintenance. Please save your work and logout.

Show simple item record

dc.contributor.authorTURBET, Martin,
hal.structure.identifierECLIPSE 2016
dc.contributor.authorLECONTE, J.
hal.structure.identifierECLIPSE 2016
dc.contributor.authorSELSIS, Franck
hal.structure.identifierNamur Center for Complex Systems [Namur] [NaXys]
dc.contributor.authorBOLMONT, Emeline,
hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
dc.contributor.authorFORGET, Francois,
hal.structure.identifierDpto. de Organización de Empresas, Escuela Técnica Superior de Ingeniería Industrial de Barcelona
dc.contributor.authorRIBAS, Ignasi,
hal.structure.identifierECLIPSE 2016
dc.contributor.authorRAYMOND, Sean N.
dc.contributor.authorANGLADA-ESCUDÉ, Guillem,
dc.date.issued2016-08
dc.identifier.issn0004-6361
dc.description.abstractEnRadial velocity monitoring has found the signature of a $M \sin i = 1.3$~M$_\oplus$ planet located within the Habitable Zone of Proxima Centauri, (Anglada-Escud\'e et al. 2016). Despite a hotter past and an active host star the planet Proxima~b could have retained enough volatiles to sustain surface habitability (Ribas et al. 2016). Here we use a 3D Global Climate Model to simulate Proxima b's atmosphere and water cycle for its two likely rotation modes (1:1 and 3:2 resonances) while varying the unconstrained surface water inventory and atmospheric greenhouse effect. We find that a broad range of atmospheric compositions can allow surface liquid water. On a tidally-locked planet with a surface water inventory larger than 0.6 Earth ocean, liquid water is always present, at least in the substellar region. Liquid water covers the whole planet for CO$_2$ partial pressures $\gtrsim 1$~bar. For smaller water inventories, water can be trapped on the night side, forming either glaciers or lakes, depending on the amount of greenhouse gases. With a non-synchronous rotation, a minimum CO$_2$ pressure is required to avoid falling into a completely frozen snowball state if water is abundant. If the planet is dryer, $\sim$0.5~bar of CO$_2$ would suffice to prevent the trapping of any arbitrary small water inventory into polar ice caps. More generally, any low-obliquity planet within the classical habitable zone of its star should be in one of the climate regimes discussed here. We use our GCM to produce reflection/emission spectra and phase curves. We find that atmospheric characterization will be possible by direct imaging with forthcoming large telescopes thanks to an angular separation of $7 \lambda/D$ at 1~$\mu$m (with the E-ELT) and a contrast of $\sim 10^{-7}$. The magnitude of the planet will allow for high-resolution spectroscopy and the search for molecular signatures.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enAstrophysics - Earth and Planetary Astrophysics
dc.title.enThe habitability of Proxima Centauri b II. Possible climates and Observability
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201629577
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv1608.06827
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A112
bordeaux.volume596
bordeaux.peerReviewedoui
hal.identifierhal-01359518
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01359518v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2016-08&rft.volume=596&rft.spage=id.A112&rft.epage=id.A112&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=TURBET,%20Martin,&LECONTE,%20J.&SELSIS,%20Franck&BOLMONT,%20Emeline,&FORGET,%20Francois,&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record