Show simple item record

hal.structure.identifierInstitut de Planétologie et d'Astrophysique de Grenoble [IPAG]
dc.contributor.authorLE GAL, Romane
hal.structure.identifierThe Ohio State University [Columbus] [OSU]
hal.structure.identifierDepartments of Astronomy and Chemistry
dc.contributor.authorHERBST, Eric
hal.structure.identifierDépartement d’Aérodynamique, Energétique et Propulsion
dc.contributor.authorDUFOUR, Gwenaelle
hal.structure.identifierAMOR 2017
dc.contributor.authorGRATIER, P.
hal.structure.identifierAMOR 2017
dc.contributor.authorRUAUD, M.
hal.structure.identifierAMOR 2017
dc.contributor.authorWAKELAM, Valentine
hal.structure.identifierAMOR 2017
dc.contributor.authorVIDAL, Thomas
dc.date.issued2017
dc.identifier.issn0004-6361
dc.description.abstractEnA wide variety of molecules have recently been detected in the Horsehead nebula photodissocation region (PDR) suggesting that: (i) gas-phase and grain chemistries should both contribute to the formation of organic molecules, and (ii) far-ultraviolet (FUV) photodesorption may explain the release into the gas phase of grain surface species. In order to tackle these specific problems and more generally in order to better constrain the chemical structure of these types of environments we present a study of the Horsehead nebula gas-grain chemistry. To do so we used the 1D astrochemistry gas-grain code Nautilus with an appropriate physical structure computed with the Meudon PDR Code and compared our modeled outcomes with published observations and with previously modeled results when available. The use of a large set of chemical reactions coupled with the time-dependent code Nautilus allows us to reproduce most of the observations well, including those of the first detections in a PDR of the organic molecules HCOOH, CH2CO, CH3CHO and CH3CCH, which are mostly associated with hot cores. We also provide some abundance predictions for other molecules of interest. Understanding the chemistry behind the detection of these organic molecules is crucial to better constrain the environments these molecules can probe.
dc.language.isoen
dc.publisherEDP Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enAstrophysics - Astrophysics of Galaxies
dc.title.enA new study of the chemical structure of the Horsehead nebula: the influence of grain-surface chemistry
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201730980
dc.subject.halPlanète et Univers [physics]/Astrophysique [astro-ph]/Cosmologie et astrophysique extra-galactique [astro-ph.CO]
dc.identifier.arxiv1706.00454
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageid.A88
bordeaux.volume605
bordeaux.peerReviewedoui
hal.identifierhal-01533179
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01533179v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2017&rft.volume=605&rft.spage=id.A88&rft.epage=id.A88&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=LE%20GAL,%20Romane&HERBST,%20Eric&DUFOUR,%20Gwenaelle&GRATIER,%20P.&RUAUD,%20M.&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record