Afficher la notice abrégée

hal.structure.identifierMaison de la Simulation [MDLS]
dc.contributor.authorSAINSBURY-MARTINEZ, F.
hal.structure.identifierMaison de la Simulation [MDLS]
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorWANG, P.
hal.structure.identifierAstrophysique Interprétation Modélisation [AIM (UMR7158 / UMR_E_9005 / UM_112)]
dc.contributor.authorFROMANG, S.
hal.structure.identifierMaison de la Simulation [MDLS]
dc.contributor.authorTREMBLIN, Pascal
hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
dc.contributor.authorDUBOS, T.
hal.structure.identifierLaboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
dc.contributor.authorMEURDESOIF, Y.
hal.structure.identifierLaboratoire de Météorologie Dynamique (UMR 8539) [LMD]
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorSPIGA, A.
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorLECONTE, J.
hal.structure.identifierUniversity of Exeter
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorBARAFFE, I.
hal.structure.identifierUniversity of Exeter
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorCHABRIER, G.
hal.structure.identifierSchool of Physics and Astronomy [Exeter]
dc.contributor.authorMAYNE, N.
hal.structure.identifierSchool of Physics and Astronomy [Exeter]
dc.contributor.authorDRUMMOND, B.
hal.structure.identifierInstitut de recherche en astrophysique et planétologie [IRAP]
dc.contributor.authorDEBRAS, F.
dc.date.issued2019-12
dc.identifier.issn0004-6361
dc.description.abstractEnContext. The anomalously large radii of hot Jupiters has long been a mystery. However, by combining both theoretical arguments and 2D models, a recent study has suggested that the vertical advection of potential temperature leads to a hotter adiabatic temperature profile in the deep atmosphere than the profile obtained with standard 1D models.Aims. In order to confirm the viability of that scenario, we extend this investigation to 3D, time-dependent models.Methods. We use a 3D general circulation model DYNAMICO to perform a series of calculations designed to explore the formation and structure of the driving atmospheric circulations, and detail how it responds to changes in both the upper and deep atmospheric forcing.Results. In agreement with the previous, 2D study, we find that a hot adiabat is the natural outcome of the long-term evolution of the deep atmosphere. Integration times of the order of 1500 yr are needed for that adiabat to emerge from an isothermal atmosphere, explaining why it has not been found in previous hot Jupiter studies. Models initialised from a hotter deep atmosphere tend to evolve faster toward the same final state. We also find that the deep adiabat is stable against low-levels of deep heating and cooling, as long as the Newtonian cooling timescale is longer than ~3000 yr at 200 bar.Conclusions. We conclude that steady-state vertical advection of potential temperature by deep atmospheric circulations constitutes a robust mechanism to explain the inflated radii of hot Jupiters. We suggest that future models of hot Jupiters be evolved for a longer time than currently done, and when possible that models initialised with a hot deep adiabat be included. We stress that this mechanism stems from the advection of entropy by irradiation-induced mass flows and does not require a (finely tuned) dissipative process, in contrast with most previously suggested scenarios.
dc.language.isoen
dc.publisherEDP Sciences
dc.subject.enplanets and satellites: interiors
dc.subject.enplanets and satellites: atmospheres
dc.subject.enplanets and satellites: fundamental parameters
dc.subject.enplanets and satellites: individual: HD 209458b
dc.subject.enhydrodynamics
dc.title.enIdealised simulations of the deep atmosphere of hot Jupiters
dc.title.enDeep, hot adiabats as a robust solution to the radius inflation problem
dc.typeArticle de revue
dc.identifier.doi10.1051/0004-6361/201936445
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]
bordeaux.journalAstronomy and Astrophysics - A&A
bordeaux.pageA114
bordeaux.volume632
bordeaux.peerReviewedoui
hal.identifiercea-02408232
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//cea-02408232v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Astronomy%20and%20Astrophysics%20-%20A&A&rft.date=2019-12&rft.volume=632&rft.spage=A114&rft.epage=A114&rft.eissn=0004-6361&rft.issn=0004-6361&rft.au=SAINSBURY-MARTINEZ,%20F.&WANG,%20P.&FROMANG,%20S.&TREMBLIN,%20Pascal&DUBOS,%20T.&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée