Show simple item record

hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorADAM, Clayton
hal.structure.identifierLaboratoire de biomécanique [LBM]
hal.structure.identifierLaboratoire de Mécanique et Technologie [LMT]
hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorROUCH, Philippe
hal.structure.identifierLaboratoire de biomécanique [LBM]
hal.structure.identifierArts et Métiers ParisTech
hal.structure.identifierInstitut de Biomecanique Humaine Georges Charpak
dc.contributor.authorSKALLI, Wafa
dc.date.accessioned2021-05-14T09:36:49Z
dc.date.available2021-05-14T09:36:49Z
dc.date.issued2016
dc.identifier.issn0021-9290
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/76313
dc.description.abstractThe intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.
dc.language.isoen
dc.publisherElsevier
dc.subject.enFinite element
dc.subject.enShear resistance
dc.subject.enInterlamellar interface
dc.subject.enIntervertebral disc
dc.subject.enCompressive stiffness
dc.title.enInter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jbiomech.2015.10.041
dc.subject.halSciences de l'ingénieur [physics]/Mécanique [physics.med-ph]/Biomécanique [physics.med-ph]
bordeaux.journalJournal of Biomechanics
bordeaux.page4303-8
bordeaux.volume48
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295*
bordeaux.issue16
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.institutionINRAE
bordeaux.institutionArts et Métiers
bordeaux.peerReviewedoui
hal.identifierhal-02454677
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02454677v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Biomechanics&rft.date=2016&rft.volume=48&rft.issue=16&rft.spage=4303-8&rft.epage=4303-8&rft.eissn=0021-9290&rft.issn=0021-9290&rft.au=ADAM,%20Clayton&ROUCH,%20Philippe&SKALLI,%20Wafa&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record