Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc
ROUCH, Philippe
Laboratoire de biomécanique [LBM]
Laboratoire de Mécanique et Technologie [LMT]
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Laboratoire de Mécanique et Technologie [LMT]
Institut de Biomecanique Humaine Georges Charpak
SKALLI, Wafa
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
ROUCH, Philippe
Laboratoire de biomécanique [LBM]
Laboratoire de Mécanique et Technologie [LMT]
Institut de Biomecanique Humaine Georges Charpak
Laboratoire de biomécanique [LBM]
Laboratoire de Mécanique et Technologie [LMT]
Institut de Biomecanique Humaine Georges Charpak
SKALLI, Wafa
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
< Reduce
Laboratoire de biomécanique [LBM]
Arts et Métiers ParisTech
Institut de Biomecanique Humaine Georges Charpak
Language
en
Article de revue
This item was published in
Journal of Biomechanics. 2016, vol. 48, n° 16, p. 4303-8
Elsevier
Abstract
The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus ...Read more >
The intervertebral disc withstands large compressive loads (up to nine times bodyweight in humans) while providing flexibility to the spinal column. At a microstructural level, the outer sheath of the disc (the annulus fibrosus) comprises 12–20 annular layers of alternately crisscrossed collagen fibres embedded in a soft ground matrix. The centre of the disc (the nucleus pulposus) consists of a hydrated gel rich in proteoglycans. The disc is the largest avascular structure in the body and is of much interest biomechanically due to the high societal burden of disc degeneration and back pain. Although the disc has been well characterized at the whole joint scale, it is not clear how the disc tissue microstructure confers its overall mechanical properties. In particular, there have been conflicting reports regarding the level of attachment between adjacent lamellae in the annulus, and the importance of these interfaces to the overall integrity of the disc is unknown. We used a polarized light micrograph of the bovine tail disc in transverse cross-section to develop an image-based finite element model incorporating sliding and separation between layers of the annulus, and subjected the model to axial compressive loading. Validation experiments were also performed on four bovine caudal discs. Interlamellar shear resistance had a strong effect on disc compressive stiffness, with a 40% drop in stiffness when the interface shear resistance was changed from fully bonded to freely sliding. By contrast, interlamellar cohesion had no appreciable effect on overall disc mechanics. We conclude that shear resistance between lamellae confers disc mechanical resistance to compression, and degradation of the interlamellar interface structure may be a precursor to macroscopic disc degeneration.Read less <
English Keywords
Finite element
Shear resistance
Interlamellar interface
Intervertebral disc
Compressive stiffness
Origin
Hal imported