Probabilités sur les espaces de chemins et dans les espaces métriques associés via la géométrie de l’information ; applications radar
Langue
en
Thèses de doctorat
Date de soutenance
2017-07-04Spécialité
Mathématiques appliquées et calcul scientifique
École doctorale
École doctorale de mathématiques et informatique (Talence, Gironde)Résumé
Nous nous intéressons à la comparaison de formes de courbes lisses prenant leurs valeurs dans une variété riemannienne M. Dans ce but, nous introduisons une métrique riemannienne invariante par reparamétrisations sur la ...Lire la suite >
Nous nous intéressons à la comparaison de formes de courbes lisses prenant leurs valeurs dans une variété riemannienne M. Dans ce but, nous introduisons une métrique riemannienne invariante par reparamétrisations sur la variété de dimension infinie des immersions lisses dans M. L’équation géodésique est donnée et les géodésiques entre deux courbes sont construites par tir géodésique. La structure quotient induite par l’action du groupe des reparamétrisations sur l’espace des courbes est étudiée. À l’aide d’une décomposition canonique d’un chemin dans un fibré principal, nous proposons un algorithme qui construit la géodésique horizontale entre deux courbes et qui fournit un matching optimal. Dans un deuxième temps, nous introduisons une discrétisation de notre modèle qui est elle-même une structure riemannienne sur la variété de dimension finie Mn+1 des "courbes discrètes" définies par n + 1 points, où M est de courbure sectionnelle constante. Nous montrons la convergence du modèle discret vers le modèle continu, et nous étudions la géométrie induite. Des résultats de simulations dans la sphère, le plan et le demi-plan hyperbolique sont donnés. Enfin, nous donnons le contexte mathématique nécessaire à l’application de l’étude de formes dans une variété au traitement statistique du signal radar, où des signaux radars localement stationnaires sont représentés par des courbes dans le polydisque de Poincaré via la géométrie de l’information.< Réduire
Résumé en anglais
We are concerned with the comparison of the shapes of open smooth curves that take their values in a Riemannian manifold M. To this end, we introduce a reparameterization invariant Riemannian metric on the infinite-dimensional ...Lire la suite >
We are concerned with the comparison of the shapes of open smooth curves that take their values in a Riemannian manifold M. To this end, we introduce a reparameterization invariant Riemannian metric on the infinite-dimensional manifold of these curves, modeled by smooth immersions in M. We derive the geodesic equation and solve the boundary value problem using geodesic shooting. The quotient structure induced by the action of the reparametrization group on the space of curves is studied. Using a canonical decomposition of a path in a principal bundle, we propose an algorithm that computes the horizontal geodesic between two curves and yields an optimal matching. In a second step, restricting to base manifolds of constant sectional curvature, we introduce a detailed discretization of the Riemannian structure on the space of smooth curves, which is itself a Riemannian metric on the finite-dimensional manifold Mn+1 of "discrete curves" given by n + 1 points. We show the convergence of the discrete model to the continuous model, and study the induced geometry. We show results of simulations in the sphere, the plane, and the hyperbolic halfplane. Finally, we give the necessary framework to apply shape analysis of manifold-valued curves to radar signal processing, where locally stationary radar signals are represented by curves in the Poincaré polydisk using information geometry.< Réduire
Mots clés
Étude de formes
Géométrie de l’information
Matching entre courbes
Variété riemannienne
Mots clés en anglais
Shape analysis
Information geometry
Optimal matching between curves
Riemannian manifold
Origine
Importé de STARUnités de recherche