Méthode des éléments finis augmentés pour la rupture quasi-fragile : application aux composites tissés à matrice céramique
Idioma
fr
Thèses de doctorat
Fecha de defensa
2017-03-08Especialidad
Mécanique
Escuela doctoral
École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)Resumen
Le calcul de la durée de vie des Composites tissés à Matrice Céramique (CMC) nécessite de déterminer l’évolution de la densité de fissures dans le matériau(pouvant atteindre 10 mm-1). Afin de les représenter finement on ...Leer más >
Le calcul de la durée de vie des Composites tissés à Matrice Céramique (CMC) nécessite de déterminer l’évolution de la densité de fissures dans le matériau(pouvant atteindre 10 mm-1). Afin de les représenter finement on se propose de travailler à l’échelle mésoscopique. Les méthodes de type Embedded Finite Element (EFEM) nous ont paru être les plus adaptées au problème. Elles permettent une représentation discrète des fissures sans introduire de degrés de liberté additionnels.Notre choix s’est porté sur une EFEM s’affranchissant d’itérations élémentaires et appelée Augmented Finite Element Method (AFEM). Une variante d’AFEM, palliant des lacunes de la méthode originale, a été développée. Nous avons démontré que,sous certaines conditions, AFEM et la méthode des éléments finis classique (FEM) étaient équivalentes. Nous avons ensuite comparé la précision d’AFEM et de FEM pour représenter des discontinuités fortes et faibles. Les travaux de thèse se concluent par des exemples d’application de la méthode aux CMC.< Leer menos
Resumen en inglés
Computing the lifetime of woven Ceramic Matrix Composites (CMC) requires evaluating the crack density in the material (which can reach 10 mm-1). Numerical simulations at the mesoscopic scale are needed to precisely estimate ...Leer más >
Computing the lifetime of woven Ceramic Matrix Composites (CMC) requires evaluating the crack density in the material (which can reach 10 mm-1). Numerical simulations at the mesoscopic scale are needed to precisely estimate it. Embedded Finite Element Methods (EFEM) seem to be the most appropriate to do so. They allow for a discrete representation of cracks with no additional degrees of freedom.We chose to work with an EFEM free from local iterations named the Augmented Finite Element Method (AFEM). Improvements over the original AFEM have been proposed. We also demonstrated that, under one hypothesis, the AFEM and the classical Finite Element Method (FEM) are fully equivalent. We then compare the accuracy of the AFEM and the classical FEM to represent weak and strong discontinuities. Finally, some examples of application of AFEM to CMC are given.< Leer menos
Palabras clave
Composites tissés à matrice céramique
Endommagement
Rupture
Éléments finis enrichis
Méthodes des éléments finis augmentés
Estimation d’erreur a posteriori
Échelle mésoscopique
Palabras clave en inglés
Woven ceramic matrix composites
Damage
Fracture
Enriched finite elements
Augmented finite elements
A posteriori error estimation
Mesoscopic scale
Orígen
Recolectado de STARCentros de investigación