Population modeling of early COVID-19 epidemic dynamics in French regions and estimation of the lockdown impact on infection rate
PRAGUE, Melanie
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
CLAIRON, Quentin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Voir plus >
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
PRAGUE, Melanie
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
CLAIRON, Quentin
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
THIEBAUT, Rodolphe
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
HEJBLUM, Boris
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
< Réduire

Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Langue
EN
Document de travail - Pré-publication
Résumé en anglais
We propose a population approach to model the beginning of the French COVID-19 epidemic at the regional level. We rely on an extended Susceptible-Exposed-Infectious-Recovered (SEIR) mechanistic model, a simplified ...Lire la suite >
We propose a population approach to model the beginning of the French COVID-19 epidemic at the regional level. We rely on an extended Susceptible-Exposed-Infectious-Recovered (SEIR) mechanistic model, a simplified representation of the average epidemic process. Combining several French public datasets on the early dynamics of the epidemic, we estimate region-specific key parameters conditionally on this mechanistic model through Stochastic Approximation Expectation Maximization (SAEM) optimization using Monolix software. We thus estimate basic reproductive numbers by region before isolation (between 2.4 and 3.1), the percentage of infected people over time (between 2.0 and 5.9% as of May 11 th , 2020) and the impact of nationwide lockdown on the infection rate (decreasing the transmission rate by 72% toward a R e ranging from 0.7 to 0.9). We conclude that a lifting of the lockdown should be accompanied by further interventions to avoid an epidemic rebound.< Réduire
Mots clés en anglais
Population modeling
SARS-CoV-2
Non-pharmaceutical intervention
Compartmental model
COVID-19
France
Unités de recherche