Ondes progressives et propriétés de propagation pour un problème d’épidémiologie évolutive non-local
Idioma
en
Thèses de doctorat
Fecha de defensa
2020-12-15Especialidad
Mathématiques appliquées et calcul scientifique
Escuela doctoral
École doctorale de mathématiques et informatique (Talence, Gironde ; 1991-....)Resumen
Dans cette thèse nous étudions l’existence d’une onde progressive pour un système d’équations intégro-différentiels provenant de l’épidémiologie évolutive. Nous utilisons des idées issues de la théorie des systèmes dynamiques ...Leer más >
Dans cette thèse nous étudions l’existence d’une onde progressive pour un système d’équations intégro-différentiels provenant de l’épidémiologie évolutive. Nous utilisons des idées issues de la théorie des systèmes dynamiques couplées à des estimations sur le comportement asymptotique des profils. Nous prouvons que les ondes progressives ont une structure assez simple découplant les variables de propagation spatio-temporelle des variables de trait phénotypique. Cette analyse nous permet de réduire le système d’équations des profils d’ondes progressives à dimension infinie à un système d’EDO à quatre dimensions. Nous prouvons l’existence d’ondes progressives pour toute vitesse d’onde supérieure à une vitesse minimale c?, pourvu que le seuil épidémique R0, qui s’exprime en fonction de la valeur propre principale d’un certain opérateur intégral, soit strictement supérieur à 1. Cette même condition de seuil est également utilisée pour démontrer que toute onde progressive relie deux états stationnaires déterminés. Dans une deuxième partie, nous étudions les propriétés de propagation des solutions pour le même système d’équations spatialement distribué, avec une densité initiale de plantes infectées à support compact spatialement en x. Lorsque R0 > 1, nous prouvons que la propagation se produit avec une vitesse de propagation qui coïncide avec la vitesse minimale c? des ondes progressives étudiées dans la première partie. De plus, la solution du problème de Cauchy converge asymptotiquement vers une fonction spécifique pour laquelle la variable x du repère mobile et celle du phénotype y sont séparées.< Leer menos
Resumen en inglés
In this thesis we study the existence of a travelling wave solutions for an integro-differential system of equations from evolutionary epidemiology. We use ideas from dynamical system ideas theory coupled with estimates ...Leer más >
In this thesis we study the existence of a travelling wave solutions for an integro-differential system of equations from evolutionary epidemiology. We use ideas from dynamical system ideas theory coupled with estimates of the asymptotic behaviour of profiles. We prove that the wave solutions have a rather simple structure. This analysis allows us to reduce the infinite dimensional travelling wave profile system of equations to a four dimensional ODE system. The latter is used to prove the existence of travelling wave solutions for any wave speed larger than a minimal wave speed c?, provided that the epidemic threshold R0, which is expressed as a function of the principal eigenvalue of a certain integral operator, is strictly greater than 1. This same threshold condition is also used to prove that any travelling wave connects two determined stationary states. In the second part, we study the propagation properties of the solutions for the same spatially distributed system of equations, when the initial density of infected plants is a compactly supported function with the space variable x. When R0 > 1, we prove that spreading occurs with a definite spreading speed that coincides with the minimal speed c? of the travelling wave solutions discussed in the first part. Moreover, the solution of the Cauchy problem asymptotically converges to some specific function for which the moving frame variable x and the phenotype one y are separated.< Leer menos
Palabras clave
Évolution
Vitesse de propagation
Épidémiologie
Comportement asymptotique
Dynamique des populations
Système de réaction-diffusion non local
Vitesse minimale
Ondes progressives
Palabras clave en inglés
Evolution
Spreading speed
Epidemiology
Long time behaviour
Population dynamics
Non-local diffusive epidemic system
Minimal wave speed
Travelling wave solutions
Orígen
Recolectado de STARCentros de investigación