Analyzing cellular immunogenicity in vaccine clinical trials: a new statistical method including non-specific responses for accurate estimation of vaccine effect
LHOMME, Edouard
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
HEJBLUM, Boris
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Voir plus >
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
LHOMME, Edouard
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
HEJBLUM, Boris
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
THIEBAUT, Rodolphe
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
RICHERT, Laura
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
< Réduire
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Langue
EN
Article de revue
Ce document a été publié dans
Journal of Immunological Methods. 2020, vol. 477, p. 112711
Résumé en anglais
Evaluation of immunogenicity is a key step in the clinical development of novel vaccines. T-cell responses to vaccine candidates are typically assessed by intracellular cytokine staining (ICS) using multiparametric flow ...Lire la suite >
Evaluation of immunogenicity is a key step in the clinical development of novel vaccines. T-cell responses to vaccine candidates are typically assessed by intracellular cytokine staining (ICS) using multiparametric flow cytometry. A conventional statistical approach to analyze ICS data is to compare, between vaccine regimens or between baseline and post-vaccination of the same regimen depending on the trial design, the percentages of cells producing a cytokine of interest after ex vivo stimulation of peripheral blood mononuclear cells (PBMC) with vaccine antigens, after subtracting the non-specific response (of unstimulated cells) of each sample. Subtraction of the non-specific response is aimed at capturing the specific response to the antigen, but raises methodological issues related to measurement error and statistical power. We describe here a new statistical approach to analyze ICS data from vaccine trials. We propose a bivariate linear regression model for estimating the non-specific and antigen-specific ICS responses. We benchmarked the performance of the model in terms of both bias and control of type-I and -II errors in comparison with conventional approaches, and applied it to simulated data as well as real pre- and post-vaccination data from two recent HIV vaccine trials (ANRS VRI01 in healthy volunteers and therapeutic VRI02 ANRS 149 LIGHT in HIV-infected participants). The model was as good as the conventional approaches (with or without subtraction of the non-specific response) in all simulation scenarios in terms of statistical performance, whereas the conventional approaches did not provide robust results across all scenarios. The proposed model estimated the T-cell responses to the antigens without any effect of the non-specific response on the specific response, irrespective of the correlation between the non-specific and specific responses. This novel method of analyzing T-cell immunogenicity data based on bivariate modeling is more flexible than conventional methods, and so yields more detailed results and enables accurate interpretation of vaccine-induced response.< Réduire
Mots clés
SISTM
Unités de recherche