Engineering a Robust Flat Band in III–V Semiconductor Heterostructures
FRANCHINA VERGEL, Nathali
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
FLEURY, Guillaume
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Voir plus >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
FRANCHINA VERGEL, Nathali
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
FLEURY, Guillaume
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
DESPLANQUE, Ludovic
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
DELERUE, Christophe
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
GRANDIDIER, Bruno
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
SCIACCA, Davide
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
BERTHE, Maxime
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
VAURETTE, François
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
LAMBERT, Yannick
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
YAREKHA, Dmitri
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
TROADEC, David
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
COINON, Christophe
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
WALLART, Xavier
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
< Réduire
Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 [IEMN]
Langue
EN
Article de revue
Ce document a été publié dans
Nano Letters. 2020-12-18, vol. 21, p. 680
Résumé en anglais
Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band ...Lire la suite >
Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.< Réduire
Mots clés en anglais
Two-dimensional lattice
III−V semiconductor
quantum well
band engineering
flat band
disorder
block copolymer lithography
scanning tunneling spectroscopy
tight binding calculations
Projet Européen
ERC Advanced Grant 692691-“FIRST STEP”
Project ANR
Super-réseau d'antipoints de Dirac pour les électrons dans les semiconducteurs III-V
/
Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge. - ANR-11-EQPX-0015
/
Centre expérimental pour l'étude des propriétés des nanodispositifs dans un large spectre du DC au moyen Infra-rouge. - ANR-11-EQPX-0015
Unités de recherche