Challenges of Microbiome Data Analysis in Chronic Respiratory Disease Studies: Examples from Three French Studies
AVALOS, Marta
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Centre Inria de l'Université de Bordeaux
Université de Bordeaux [UB]
Voir plus >
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Centre Inria de l'Université de Bordeaux
Université de Bordeaux [UB]
AVALOS, Marta
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Centre Inria de l'Université de Bordeaux
Université de Bordeaux [UB]
Statistics In System biology and Translational Medicine [SISTM]
Bordeaux population health [BPH]
Centre Inria de l'Université de Bordeaux
Université de Bordeaux [UB]
ENAUD, Raphaël
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Université de Bordeaux [UB]
CHU de Bordeaux Pellegrin [Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Université de Bordeaux [UB]
CHU de Bordeaux Pellegrin [Bordeaux]
DELHAES, Laurence
Université de Bordeaux [UB]
CHU de Bordeaux Pellegrin [Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
< Réduire
Université de Bordeaux [UB]
CHU de Bordeaux Pellegrin [Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Langue
EN
Communication dans un congrès
Ce document a été publié dans
ICSDS 2024 - International Conference on Statistics and Data Science, 2024-12-16, Nice.
Résumé en anglais
Studies on chronic respiratory diseases and their associations with the microbiome -whether from the respiratory tract, gut (gut-lung axis), or environmental sources (e.g., indoor dust)- present unique statistical challenges. ...Lire la suite >
Studies on chronic respiratory diseases and their associations with the microbiome -whether from the respiratory tract, gut (gut-lung axis), or environmental sources (e.g., indoor dust)- present unique statistical challenges. These studies often involve small sample sizes and high-dimensional data, with hundreds or thousands of bacterial and fungal abundances measured. The data are compositional, frequently zero-inflated, and either geographically grouped (e.g., environmental microbiome and asthma in the COBRA-Env study) or longitudinal (e.g., cystic fibrosis patients in the French LumIvaBiota cohort).Meta-analysis is an essential tool for synthesizing knowledge by pooling data from multiple studies to increase statistical power. However, microbiome research often shows high variability across studies in terms of methodologies, sample collection, sequencing techniques, and population characteristics. Exploring the sources of heterogeneity is crucial for ensuring comparability. Penalized meta-regression methods, such as the Lasso, provide a way to address heterogeneity in cases with few studies (such as those on chronic respiratory diseases linked to the microbiome) and many potential explanatory factors.In this talk, we will illustrate the statistical challenges associated with microbiome studies in chronic respiratory diseases and discuss strategies to address these complexities.< Réduire
Mots clés en anglais
Biostatistics
Machine Learning
High-dimensional
Application
Computation