Synthesis of a Conductive Copolymer and Phase Diagram of Its Suspension with Single-Walled Carbon Nanotubes by Microfluidic Technology
YAO, Shenghong
Laboratoire de Chimie des polymères organiques [LCPO]
Laboratoire du Futur [LOF]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Laboratoire du Futur [LOF]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
BETHANI, Aikaterini
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Voir plus >
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
YAO, Shenghong
Laboratoire de Chimie des polymères organiques [LCPO]
Laboratoire du Futur [LOF]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Laboratoire du Futur [LOF]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
BETHANI, Aikaterini
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
BROCHON, Cyril
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
FLEURY, Guillaume
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
HADZIIOANNOU, Georges
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
CLOUTET, Eric
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
< Réduire
Laboratoire de Chimie des polymères organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Langue
en
Article de revue
Ce document a été publié dans
Macromolecules. 2015, vol. 48, p. pp. 7473-7480
American Chemical Society
Résumé en anglais
Amphiphilic block copolymers composed of a poly(3-hexylthiophene) (P3HT) segment and a sulfonated polystyrene (PS-stat-PSS) sequence with well-defined and easily tunable structure were synthesized through Grignard ...Lire la suite >
Amphiphilic block copolymers composed of a poly(3-hexylthiophene) (P3HT) segment and a sulfonated polystyrene (PS-stat-PSS) sequence with well-defined and easily tunable structure were synthesized through Grignard metathesispolymerization (GRIM), RAFT polymerization and sulfonation of PS. Because of the hydrophilic nature and ionic conductivityof the PSS segment, such copolymer shows good solubility in water and high conductivity ∼1 S/m in form of dry film.Conductivity can be further enhanced with the addition of single-walled nanotubes (SWNTs). The present amphiphilic blockcopolymer enables efficient unbundling and stabilization of SWNTs in water. With the help of an original microfluidic techniquereferred to as microf luidic pervaporation, we investigated the concentration process of SWNT/copolymer suspensions up to dry films and obtained a complete phase diagram which reveals the aggregation of SWNTs during the concentration process in a given concentration range. High conductivity of about 370 S/m is achieved for SWNT/copolymer nanocomposites at highconcentration of SWNTs. The microfluidic pervaporation method is also shown to provide a direct determination of the CNT percolation threshold.< Réduire
Mots clés en anglais
Microfluidique
Diagramme de phases
Nanotube
Polymères conducteurs
Project ANR
ANR-10-LABX-0042-AMADEUS - null
IdEx Bordeaux - ANR-10-IDEX-0003-02/10-IDEX-0003
IdEx Bordeaux - ANR-10-IDEX-0003-02/10-IDEX-0003
Origine
Importé de halUnités de recherche