Dynamics of particulate organic matter in a coastal system characterized by the occurrence of marine mucilage – A stable isotope study
DURAN, Robert
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
LAUGA, Béatrice
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
MONPERRUS, Mathilde
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
PIGOT, Thierry
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
< Réduire
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Langue
EN
Article de revue
Ce document a été publié dans
Journal of Sea Research (JSR). 2016, vol. 116, p. 12--22
Résumé en anglais
In coastal systems, particulate organic matter (POM) originates from various autochthonous and allochthonous organic matter sources. Also, some coastal systems are characterized by the occurrence of large amounts of ...Lire la suite >
In coastal systems, particulate organic matter (POM) originates from various autochthonous and allochthonous organic matter sources. Also, some coastal systems are characterized by the occurrence of large amounts of mucilaginous material of biologic origin (i.e. phytoplankton, bacteria), which aggregates and potentially traps other organisms and particles present in the water column. This study focuses on POM origin and spatio-temporal dynamics in the South-East coast of the Bay of Biscay, an area subject to mucilage occurrence. In order to investigate POM quantitative and qualitative (C and N elemental and isotopic ratios) characteristics, sampling was performed over an annual cycle at two sites experiencing different mucilage occurrence and river influence. Contribution of phytoplankton, terrestrial POM and anthropogenic POM to coastal-POM composition was calculated using a three-sources mixing model. Overall, phytoplankton dominated the coastal-POM composition at all seasons, sites and most of the depths (71.6 ± 24.2%). Terrestrial-POM contribution was moderate (22.7 ± 21.8%) and anthropogenic-POM contribution was usually negligible (5.7 ± 7.4%). Both sites mainly exhibited similar vertical and temporal variations in terms of POM origin and dynamics: terrestrial-POM contribution increased with depth and was higher in winter at all depths and in autumn in bottom waters, compared to other seasons. The main differences between both sites were related to the vertical dynamics of the terrestrial contribution to the coastal POM. Horizontal, vertical and temporal variation of POM composition was linked to processes driving the sedimentary hydrodynamics: the river flow, the direction of the river plume and events of sediment resuspension/deposition. During the study period, the mucilage occurred only as flocs (small aggregates). The mucilage was of autochthonous origin and did not trap detectable amount of allochthonous material. © 2016 Elsevier B.V.< Réduire
Mots clés en anglais
Bay of Biscay
Coastal systems
Marine mucilage
Particulate organic matter
Stable isotopes