Show simple item record

hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorRAYMOND, Sean
dc.contributor.authorKAIB, Nathan
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorSELSIS, Franck
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorBOUY, Herve
dc.date.accessioned2024-10-10T02:09:23Z
dc.date.available2024-10-10T02:09:23Z
dc.date.issued2024-01-27
dc.identifier.issn0035-8711
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/202373
dc.description.abstractEnABSTRACT Given the inexorable increase in the Sun’s luminosity, Earth will exit the habitable zone in ∼1 Gyr. There is a negligible chance that Earth’s orbit will change during that time through internal Solar System dynamics. However, there is a ∼ 1 per cent chance per Gyr that a star will pass within 100 au of the Sun. Here, we use N-body simulations to evaluate the possible evolutionary pathways of the planets under the perturbation from a close stellar passage. We find a ∼ 92 per cent chance that all eight planets will survive on orbits similar to their current ones if a star passes within 100 au of the Sun. Yet a passing star may disrupt the Solar System, by directly perturbing the planets’ orbits or by triggering a dynamical instability. Mercury is the most fragile, with a destruction rate (usually via collision with the Sun) higher than that of the four giant planets combined. The most probable destructive pathways for Earth are to undergo a giant impact (with the Moon or Venus) or to collide with the Sun. Each planet may find itself on a very different orbit than its present-day one, in some cases with high eccentricities or inclinations. There is a small chance that Earth could end up on a more distant (colder) orbit, through re-shuffling of the system’s orbital architecture, ejection into interstellar space (or into the Oort cloud), or capture by the passing star. We quantify plausible outcomes for the post-flyby Solar System.
dc.language.isoen
dc.publisherOxford University Press (OUP): Policy P - Oxford Open Option A
dc.title.enFuture trajectories of the Solar System: dynamical simulations of stellar encounters within 100 au
dc.typeArticle de revue
dc.identifier.doi10.1093/mnras/stad3604
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv2311.12171
bordeaux.journalMonthly Notices of the Royal Astronomical Society
bordeaux.page6126-6138
bordeaux.volume527
bordeaux.hal.laboratoriesLaboratoire d'Astrophysique de Bordeaux (LAB) - UMR 5804*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-04727886
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04727886v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Monthly%20Notices%20of%20the%20Royal%20Astronomical%20Society&rft.date=2024-01-27&rft.volume=527&rft.issue=3&rft.spage=6126-6138&rft.epage=6126-6138&rft.eissn=0035-8711&rft.issn=0035-8711&rft.au=RAYMOND,%20Sean&KAIB,%20Nathan&SELSIS,%20Franck&BOUY,%20Herve&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record