Synthesis of linear chitosan-block-dextran copolysaccharides with dihydrazide and dioxyamine linkers
COURTECUISSE, Elise
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Voir plus >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
COURTECUISSE, Elise
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
SCHATZ, Christophe
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Langue
EN
Article de revue
Ce document a été publié dans
Carbohydrate Polymers. 2024-12-01, vol. 345, p. 122576
Résumé en anglais
Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. ...Lire la suite >
Dihydrazide (ADH) and dioxyamine (PDHA) were assessed for their efficacy in coupling chitosan and dextran via their reducing ends. Initially, the end-functionalization of the individual polysaccharide blocks was investigated. Under non-reducing conditions, chitosan with a 2,5-anhydro-D-mannose unit at its reducing end exhibited high reactivity with both PDHA and ADH. Dextran, with a normal reducing end, showed superior reactivity with PDHA compared to ADH, although complete conversion with ADH could be achieved under reductive conditions with NaBH3CN. Importantly, the oxime bond in PDHA conjugates exhibited greater stability against hydrolysis compared to the hydrazone bond in ADH conjugates. The optimal block coupling method consisted in reacting chitosan with an excess of dextran pre-functionalized with PDHA. The copolysaccharides could be synthesized in high yields under both reducing and non-reducing conditions. This methodology was applied to relatively long polysaccharide blocks with molecular weight up to 14,000 g/mol for chitosan and up to 40,000 g/mol for dextran. Surprisingly, block copolysaccharides did not self-assemble at neutral or basic pH; rather, they precipitated due to hydrogen bonding between neutralized amino groups of chitosan. However, nanoparticles could be obtained through a nanoprecipitation approach.< Réduire
Mots clés en anglais
Chitosan
Dextran
Hydrazone
Oxime
Conjugate
Block copolymer
Unités de recherche