Magnetic responsive polymer composite materials
SANDRE, Olivier
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Voir plus >
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
SANDRE, Olivier
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
LECOMMANDOUX, Sebastien
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 3 LCPO : Polymer Self-Assembly & Life Sciences
Langue
en
Article de revue
Ce document a été publié dans
Chemical Society Reviews. 2013, vol. 42, n° 17, p. 7099-7116
Royal Society of Chemistry
Résumé en anglais
Magnetic responsive materials are the topic of intense research due to their potential breakthrough applications in the biomedical, coatings, microfluidics and microelectronics fields. By merging magnetic and polymer ...Lire la suite >
Magnetic responsive materials are the topic of intense research due to their potential breakthrough applications in the biomedical, coatings, microfluidics and microelectronics fields. By merging magnetic and polymer materials one can obtain composites with exceptional magnetic responsive features. Magnetic actuation provides unique capabilities as it can be spatially and temporally controlled, and can additionally be operated externally to the system, providing a non-invasive approach to remote control. We identified three classes of magnetic responsive composite materials, according to their activation mode and intended applications, which can be defined by the following aspects. (A) Their ability to be deformed (stretching, bending, rotation) upon exposure to a magnetic field. (B) The possibility of remotely dragging them to a targeted area, called magnetic guidance, which is particularly interesting for biomedical applications, including cell and biomolecule guidance and separation. (C) The opportunity to use magnetic induction for thermoresponsive polymer materials actuation, which has shown promising results for controlled drug release and shape memory devices. For each category, essential design parameters that allow fine-tuning of the properties of these magnetic responsive composites are presented using key examples.< Réduire
Mots clés en anglais
POLYMER MICROPARTICLES
MAGNETIC FIELD
IRON OXIDE NANOPARTICLES
PULSATILE DRUG RELEASE
HYDROGEL NANOCOMPOSITES
BIOMATERIALS
FABRICATION
POLYMER NANOPARTICLES
DRUG DELIVERY
NANOCAPSULES
MAGNETIC ACTUATORS
MAGNETIC ASSAYS
Origine
Importé de halUnités de recherche