Unexpected Synthesis of Segmented Poly(hydroxyurea–urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis
BOSSION, Amaury
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
AGUIRRESAROBE, Roberto
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
IRUSTA, Lourdes
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Voir plus >
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
BOSSION, Amaury
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
AGUIRRESAROBE, Roberto
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
IRUSTA, Lourdes
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
TATON, Daniel
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 1 LCPO : Polymerization Catalyses & Engineering
CRAMAIL, Henri
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
GRAU, Etienne
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 2 LCPO : Biopolymers & Bio-sourced Polymers
MECERREYES, David
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
MÜLLER, Alejandro
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
SARDON, Haritz
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
< Réduire
Departamento de Ciencia y Tecnologıa de Polımeros e Instituto de Materiales Polimericos [POLYMAT]
Langue
en
Article de revue
Ce document a été publié dans
Macromolecules. 2018, vol. 51, n° 15, p. 5556-5566
American Chemical Society
Résumé en anglais
A complete study of the effect of different organocatalysts on the step-growth polyaddition of a five-membered dicyclic carbonate, namely diglycerol dicarbonate, with a poly(ethylene glycol)-based diamine in bulk at 120 ...Lire la suite >
A complete study of the effect of different organocatalysts on the step-growth polyaddition of a five-membered dicyclic carbonate, namely diglycerol dicarbonate, with a poly(ethylene glycol)-based diamine in bulk at 120 °C was first carried out. The reaction was found to be dramatically catalyst-dependent, higher rates being observed in the presence of strong bases, such as phosphazenes (t-Bu-P4 or P4) and 5,7-triazabicyclo[4.4.0]dec-5-ene (TBD). Unexpectedly, the as-formed urethane linkages entirely vanished with time, as evidenced by FTIR and 13C NMR spectroscopies, while signals due to urea bond formation progressively appeared. An advantage of the chemical transformation occurring from urethane to urea linkages was further taken by optimizing the polymerization conditions to access a range of poly(hydroxyurea–urethane)s (PHUUs) with precise urethane to urea ratio in a one-pot process. Characterization of the corresponding polymers by rheological measurements showed that the storage modulus reached a plateau at high temperatures and at high urea contents. The application temperature range of poly(hydroxyurea–urethane)s could thus be increased from 30 to 140 °C, as for regular polyurethanes. Furthermore, SAXS and phase-contrast microscopy images demonstrated that increasing the urea content improved the phase separation between soft and hard segments of these PHUUs. Altogether, this novel, straightforward, efficient, and environmentally friendly strategy enables the access to non-isocyanate poly(urea–urethane)s with tunable urethane-to-urea ratio from five-membered dicyclic carbonates following an organocatalytic pathway.< Réduire
Origine
Importé de halUnités de recherche