The system will be going down for regular maintenance. Please save your work and logout.

Show simple item record

hal.structure.identifierMicrosoft Research Silicon Valley
dc.contributor.authorABRAHAM, Ittai
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierAlgorithmics for computationally intensive applications over wide scale distributed platforms [CEPAGE]
hal.structure.identifierInstitut universitaire de France [IUF]
dc.contributor.authorGAVOILLE, Cyril
dc.date.accessioned2024-04-15T09:46:19Z
dc.date.available2024-04-15T09:46:19Z
dc.date.issued2011
dc.date.conference2011-09
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/197994
dc.description.abstractEnFor every integral parameter $k > 1$, given an unweighted graph $G$, we construct in polynomial time, for each vertex $u$, a distance label $L(u)$ of size $\tO(n^{2/(2k-1)})$. For any $u,v \in G$, given $L(u),L(v)$ we can return in time $O(k)$ an \emph{affine} approximation $\dh(u,v)$ on the distance $d(u,v)$ between $u$ and $v$ in $G$ such that $d(u,v) \le \dh(u,v) \le (2k-2)d(u,v) + 1$. Hence we say that our distance label scheme has affine stretch of $(2k-2)d+1$. For $k=2$ our construction is comparable to the $O(n^{5/3})$ size, $2d+1$ affine stretch of the distance oracle of P\v{a}tra\c{s}cu and Roditty (FOCS~'10), it incurs a $o(\log{n})$ storage overhead while providing the benefits of a distance label. % For any $k>1$, given a restriction of $o(n^{1+1/(k-1)})$ on the total size of the data structure, our construction provides distance labels with affine stretch of $(2k-2)d+1$ which is better than the stretch $(2k-1)d$ scheme of Thorup and Zwick (J. ACM~'05). % Our second contribution is a compact routing scheme with poly-logarithmic addresses that provides affine stretch guarantees. With $\tO(n^{3/(3k-2)})$-bit routing tables we obtain affine stretch of $(4k-6)d+1$, for any $k>1$. % Given a restriction of $o(n^{1/(k-1)})$ on the table size, our routing scheme provides affine stretch which is better than the stretch $(4k-5)d$ routing scheme of Thorup and Zwick (SPAA~'01).
dc.language.isoen
dc.publisherSpringer
dc.source.title$25^{th}$ International Symposium on Distributed Computing (DISC)
dc.subject.ennear shortest-path
dc.subject.encompact data-structures
dc.subject.enlabeling schemes
dc.subject.enrouting schemes
dc.title.enOn approximate distance labels and routing schemes with affine stretch
dc.typeCommunication dans un congrès
dc.identifier.doi10.1007/978-3-642-24100-0_39
dc.subject.halInformatique [cs]/Algorithme et structure de données [cs.DS]
bordeaux.page404-415
bordeaux.volume6950
bordeaux.hal.laboratoriesLaboratoire Bordelais de Recherche en Informatique (LaBRI) - UMR 5800*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.title$25^{th}$ International Symposium on Distributed Computing (DISC)
bordeaux.countryIT
bordeaux.title.proceeding$25^{th}$ International Symposium on Distributed Computing (DISC)
bordeaux.conference.cityRome
bordeaux.peerReviewedoui
hal.identifierhal-00651833
hal.version1
hal.invitednon
hal.proceedingsoui
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00651833v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=$25%5E%7Bth%7D$%20International%20Symposium%20on%20Distributed%20Computing%20(DISC)&rft.date=2011&rft.volume=6950&rft.spage=404-415&rft.epage=404-415&rft.au=ABRAHAM,%20Ittai&GAVOILLE,%20Cyril&rft.genre=unknown


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record