A new method for in situ measurements of oxygen isotopologues of soil water and carbon dioxide with high time resolution
GANGI, Laura
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
ROTHFUSS, Youri
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Leer más >
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
GANGI, Laura
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
ROTHFUSS, Youri
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
VEREECKEN, Harry
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
BRÜGGEMANN, Nicolas
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
< Leer menos
Forschungszentrum Jülich GmbH | Centre de recherche de Jülich | Jülich Research Centre [FZJ]
Idioma
en
Article de revue
Este ítem está publicado en
Vadose Zone Journal. 2015, vol. 14, n° 8, p. 14 p.
Soil science society of America - Geological society of America.
Resumen en inglés
The oxygen isotope composition of atmospheric CO2 (δ1817 Oac) can be used to disentangle ecosystem component CO2 fluxes, such as soil respiration and plant assimilation, because the δ18O composition of different water ...Leer más >
The oxygen isotope composition of atmospheric CO2 (δ1817 Oac) can be used to disentangle ecosystem component CO2 fluxes, such as soil respiration and plant assimilation, because the δ18O composition of different water pools is transferred to CO2 during isotopic equilibration. The oxygen isotope exchange between CO2 and water in soils has been widely studied with theoretical models, but experimental data is scarce, albeit indispensable to characterization of the role of soils in determining δ1822 Oac. Here, we present a new methodology to monitor the δ18O of soil CO2 (δ18Osc) and of soil water (δ18Osw23 ) in situ at varying soil water content. Infrared laser spectroscopy was combined with gas-permeable polypropylene (PP) tubing installed at different depths in a sand column. The permeable tubing did not lead to any isotopic fractionation and was suitable for combined δ18Osc and δ1826 Osw measurements. Soil water became gradually 18O-enriched from the top of the sand over several days. Measured and δ1828 Osc simulated with the model MuSICA indicated incomplete CO2–H2O isotopic equilibrium. Irrigation of the sand column with tap water resulted in a temporary reset of δ18Osw along the soil column, while δ1830 Osc was only influenced when the enzyme carbonic anhydrase was added to the irrigation water. Our study demonstrates that δ18Osc and δ1831 Osw can now be monitored in situ and online with high time resolution with minimum disturbance. With this new tool at hand, research into the oxygen isotope exchange between soil water and CO2 in natural soils has the potential to advance to a new stage and help to constrain the atmospheric CO2 budget.< Leer menos
Palabras clave en inglés
carbonic anhydrase
isotopic equilibration
laser-based spectroscopy
microporous tubing
MuSICA
oxygen isotope exchange
Orígen
Importado de HalCentros de investigación