Future challenges in coupled C–N–P cycle models for terrestrial ecosystems under global change: a review
Langue
en
Article de revue
Ce document a été publié dans
Biogeochemistry. 2016, vol. 131, n° 1-2, p. 173-202
Springer Verlag
Résumé en anglais
Climate change has consequences for terrestrial functioning, but predictions of plant responses remain uncertain because of the gaps in the representation of nutrient cycles and C–N–P interactions in ecosystem models. Here, ...Lire la suite >
Climate change has consequences for terrestrial functioning, but predictions of plant responses remain uncertain because of the gaps in the representation of nutrient cycles and C–N–P interactions in ecosystem models. Here, we review the processes that are included in ecosystem models, but focus on coupled C–N–P cycle models. We highlight important plant adjustments to climate change, elevated atmospheric CO2, and/or nutrient limitations that are currently not—or only partially—incorporated in ecosystem models by reviewing experimental studies and compiling data. Plant adjustments concern C:N:P stoichiometry, photosynthetic capacity, nutrient resorption rates, allocation patterns, symbiotic N2 fixation and root exudation (phosphatases, carboxylates) and the effect of root exudation on nutrient mobilization in the soil rhizosphere (P solubilization, biochemical mineralization of organic P and priming effect). We showed that several plant adjustments could be formulated and calibrated using existing experimental data in the literature. Finally, we proposed a roadmap for future research because improving ecosystem models necessitate specific data and collaborations between modelers and empiricists.< Réduire
Mots clés
nitrogen cycle
Mots clés en anglais
carbon cycle
C:N:P stoichiometry
terrestrial ecosystem models
plant adjustments
phosphorus cycle
Origine
Importé de halUnités de recherche