Classification of forest structure using very high resolution Pleiades image texture
CHEHATA, Nesrine
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de recherche pour le développement [IRD [Tunisie]]
Voir plus >
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de recherche pour le développement [IRD [Tunisie]]
CHEHATA, Nesrine
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de recherche pour le développement [IRD [Tunisie]]
< Réduire
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de recherche pour le développement [IRD [Tunisie]]
Langue
en
Communication dans un congrès
Ce document a été publié dans
IGARSS 2014, International Geoscience and Remote Sensing Symposium, 2014-07-13, Québec. 2014
IEEE
Résumé en anglais
The potential of very high resolution Pléiades image texture for forest structure mapping was assessed on maritime pine stands in south-western France. A preliminary step showed that multi-linear regressions allow a reliable ...Lire la suite >
The potential of very high resolution Pléiades image texture for forest structure mapping was assessed on maritime pine stands in south-western France. A preliminary step showed that multi-linear regressions allow a reliable prediction of forest variables (such as crown diameter or tree height) from a set of features automatically selected among a huge number of Haralick texture features with various spatial parameterizations. In a second step, to assess Pléiades image texture contribution for classification, Random Forests (RF) classification was performed to discriminate four forest structure classes from recent reforestation to mature stand. Two texture feature selection strategies are compared: (1) the previous regression-based modelling using in situ tree measurements (2) the RF-variable importance using a visual photo-interpretation. Both methods produced comparable classification accuracies. The results highlight the contribution of processes automation and the need for using both Pléiades image resolutions (panchromatic and multispectral) to derive the best performing texture features.< Réduire
Mots clés
Pléiades
texture
Mots clés en anglais
feature selection
classification
forest
Origine
Importé de halUnités de recherche