Enhanced Electrocaloric Response of Vinylidene Fluoride–Based Polymers via One‐Step Molecular Engineering
LE GOUPIL, Florian
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
KALLITSIS, Konstantinos
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
TENCÉ‐GIRAULT, Sylvie
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Centre de recherche, développement, applications et technique de l'ouest [CERDATO]
Voir plus >
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Centre de recherche, développement, applications et technique de l'ouest [CERDATO]
LE GOUPIL, Florian
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
KALLITSIS, Konstantinos
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
TENCÉ‐GIRAULT, Sylvie
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Centre de recherche, développement, applications et technique de l'ouest [CERDATO]
Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Centre de recherche, développement, applications et technique de l'ouest [CERDATO]
POURIAMANESH, Naser
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
BROCHON, Cyril
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
CLOUTET, Eric
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
STINGELIN, Natalie
Georgia Institute of Technology [Atlanta]
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Georgia Institute of Technology [Atlanta]
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
HADZIIOANNOU, Georges
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Langue
en
Article de revue
Ce document a été publié dans
Advanced Functional Materials. 2020p. 2007043
Wiley
Résumé en anglais
Electrocaloric refrigeration is one of the most promising, environmentallyfriendly technology to replace current cooling platforms—if a notable electrocaloric effect (ECE) is realized around room temperature where the ...Lire la suite >
Electrocaloric refrigeration is one of the most promising, environmentallyfriendly technology to replace current cooling platforms—if a notable electrocaloric effect (ECE) is realized around room temperature where the highest need is. Here, a straight-forward, one-pot chemical modification of P(VDF-ter-TrFE-ter-CTFE) is reported through the controlled introduction of small fractions of double bonds within the backbone that, very uniquely, decreases the lamellar crystalline thickness while, simultaneously, enlarging the crystalline coherence along the a-b plane. This increases the polarizability and polarization without affecting the degree of crystallinity or amending the crystal unit cell—undesirable effects observed with other approaches. Specifically, the permittivity increases by >35%, from 52 to 71 at 1 kHz, and ECE improves by >60% at moderate electric fields. At 40 °C, an adiabatic temperature change >2 K is realized at 60 MV m−1 (>5.5 K at 192 MV m−1), compared to ≈1.3 K for pristine P(VDF-ter-rFE-ter-CTFE), highlighting the promise of a simple, versatile approach that allows direct film deposition without requiring any post-treatment such as mechanical stretching or high-temperature annealing for achieving the desired performance.< Réduire
Mots clés en anglais
electrocaloric effect
ferroelectric polymer
microstructure tuning
Origine
Importé de halUnités de recherche