Quantifying and reducing uncertainty in global carbon cycle predictions: lessons and perspectives from 15 years of data assimilation studies with the ORCHIDEE Terrestrial Biosphere Model
BACOUR, C.
NOVELTIS [Sté]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
NOVELTIS [Sté]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
RAOULT, N.
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
Voir plus >
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
BACOUR, C.
NOVELTIS [Sté]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
NOVELTIS [Sté]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
RAOULT, N.
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
MAIGNAN, F.
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
OTTLE, Catherine
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
PEAUCELLE, M.
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Interactions Sol Plante Atmosphère [UMR ISPA]
Universiteit Gent = Ghent University = Université de Gand [UGENT]
Interactions Sol Plante Atmosphère [UMR ISPA]
SANTAREN, D.
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation INVerse pour les mesures atmosphériques et SATellitaires [SATINV]
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation INVerse pour les mesures atmosphériques et SATellitaires [SATINV]
PEYLIN, P.
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
< Réduire
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Modélisation des Surfaces et Interfaces Continentales [MOSAIC]
Langue
en
Article de revue
Ce document a été publié dans
Global Biogeochemical Cycles. 2022, vol. 36, n° 7, p. e2021GB007177
American Geophysical Union
Résumé en anglais
Predicting terrestrial carbon, C, budgets and carbon-climate feedbacks strongly relies on our ability to accurately model interactions between vegetation, C and water cycles, and the atmosphere. However, C fluxes simulated ...Lire la suite >
Predicting terrestrial carbon, C, budgets and carbon-climate feedbacks strongly relies on our ability to accurately model interactions between vegetation, C and water cycles, and the atmosphere. However, C fluxes simulated by global, process-based terrestrial biosphere models (TBMs) remain subject to large uncertainties, partly due to unknown or poorly calibrated parameters. This is because TBMs have not routinely been confronted against C cycle related datasets within a statistical data assimilation (DA) system. In this review, we present 15 years' development of a C cycle DA system for optimizing C cycle parameters of the ORCHIDEE TBM. We analyze the impact of assimilating multiple different C cycle related datasets on regional to global-scale gross and net CO2 fluxes. We find that assimilating atmospheric CO2 data is crucial for improving (increasing) ORCHIDEE predictions of the terrestrial land C sink. The improvement is predominantly due to the global-scale constraint these data provide for optimizing initial soil C stocks, which are likely in error due to inaccurate assumptions about steady state spin-up and incomplete knowledge of land use change histories. When comparing the data-constrained ORCHIDEE land C sink estimates to the CAMS atmospheric inversion, we show that while the two approaches agree on the global C sink magnitude, they continue to differ in how the global C sink is partitioned between the northern hemisphere and tropics. We also discuss technical challenges faced in our C cycle DA studies, in particular the difficulty in characterizing the error covariance matrix due to unknown observation biases and/or model-data inconsistencies. We offer our perspectives on how to tackle these challenges that we hope can serve as a roadmap for other TBM groups wishing to develop C cycle DA systems.< Réduire
Projet Européen
30-year re-analysis of CARBON fluxES and pools over Europe and the Globe
MULTIscale SENTINEL land surface information retrieval PLatform
Observation - based system for monitoring and verification of greenhouse gases
MULTIscale SENTINEL land surface information retrieval PLatform
Observation - based system for monitoring and verification of greenhouse gases
Origine
Importé de halUnités de recherche