FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and Global Ecosystem Dynamics Investigation (GEDI) data with a deep learning approach
FAYAD, Ibrahim
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Kayrros
< Leer menos
Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] [LSCE]
Kayrros
Idioma
en
Article de revue
Este ítem está publicado en
Earth System Science Data. 2023-11-02, vol. 15, n° 11, p. 4927-4945
Copernicus Publications
Resumen en inglés
The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and ...Leer más >
The contribution of forests to carbon storage and biodiversity conservation highlights the need for accurate forest height and biomass mapping and monitoring. In France, forests are managed mainly by private owners and divided into small stands, requiring 10 to 50 m spatial resolution data to be correctly separated. Further, 35 % of the French forest territory is covered by mountains and Mediterranean forests which are managed very extensively. In this work, we used a deep-learning model based on multi-stream remote-sensing measurements (NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission and ESA's Copernicus Sentinel-1 and Sentinel-2 satellites) to create a 10 m resolution canopy height map of France for 2020 (FORMS-H). In a second step, with allometric equations fitted to the French National Forest Inventory (NFI) plot data, we created a 30 m resolution above-ground biomass density (AGBD) map (Mg ha−1) of France (FORMS-B). Extensive validation was conducted. First, independent datasets from airborne laser scanning (ALS) and NFI data from thousands of plots reveal a mean absolute error (MAE) of 2.94 m for FORMS-H, which outperforms existing canopy height models. Second, FORMS-B was validated using two independent forest inventory datasets from the Renecofor permanent forest plot network and from the GLORIE forest inventory with MAE of 59.6 and 19.6 Mg ha−1, respectively, providing greater performance than other AGBD products sampled over France. Finally, we compared FORMS-V (for volume) with wood volume estimations at the ecological region scale and obtained an R2 of 0.63 with an MAE of 30 m3 ha−1. These results highlight the importance of coupling remote-sensing technologies with recent advances in computer science to bring material insights to climate-efficient forest management policies. Additionally, our approach is based on open-access data having global coverage and a high spatial and temporal resolution, making the maps reproducible and easily scalable. FORMS products can be accessed from https://doi.org/10.5281/zenodo.7840108 (Schwartz et al., 2023).< Leer menos
Orígen
Importado de HalCentros de investigación