Multi-scale characterization of submicronic NASICON-type solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 degraded by spark plasma sintering
COURBARON, Gwenaëlle
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Technocentre, Renault SAS
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Technocentre, Renault SAS
SEVILLANO, Jon
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
CIC ENERGIGUNE - Parque Tecnol Alava
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Voir plus >
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
CIC ENERGIGUNE - Parque Tecnol Alava
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
COURBARON, Gwenaëlle
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Technocentre, Renault SAS
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Technocentre, Renault SAS
SEVILLANO, Jon
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
CIC ENERGIGUNE - Parque Tecnol Alava
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
CIC ENERGIGUNE - Parque Tecnol Alava
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
OLCHOWKA, Jacob
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
CARLIER, Dany
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
CROGUENNEC, Laurence
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
< Réduire
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Alloys and Compounds. 2024, vol. 985, p. 17406
Elsevier
Résumé en anglais
One of the most promising and developed disruptive technology of energy storage for the future is all solid-state batteries. The NASICON phase LATP (Li1.3Al0.3Ti1.7(PO4)3) is widely studied especially thanks to its high ...Lire la suite >
One of the most promising and developed disruptive technology of energy storage for the future is all solid-state batteries. The NASICON phase LATP (Li1.3Al0.3Ti1.7(PO4)3) is widely studied especially thanks to its high ionic conductivity and mechanical strength. However, high temperature densification is required to obtain a dense and conductive material. Here we explore the fast sintering by Spark Plasma Sintering (SPS) of submicronic LATP particles, and the impact of the heating rate on the physico-chemical and transport properties of the pristine powder. High-speed rate for the sintering process induces particles’ growth, avoiding any reduction of titanium. The impurity AlPO4 plays a major role on the conductivity, depending on its content but also on its distribution within the composite, either as a coating (surface modification) or as crystalline particles within the grain boundaries. An intimate understanding of the ceramic composites was achieved using combination of advanced characterization techniques to get a multi-scale description of the material, from the pristine to the sintered states, from the surface to the bulk, and from the atomic long range to the local scales. Sharing these fundamental results is essential, with among other motivations, the spreading of our interpretation of complex spectroscopic results (Electronic Spin Resonance (ESR) spectroscopy, solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS)), key for characterization of reactivities at interfaces in this work and in others.< Réduire
Mots clés en anglais
NASICON structure
Phosphate inorganic electrolyte
Spark plasma sintering
Multi-scale reactivity
Conductivity
Electronic Spin Resonance spectroscopy
Solid-state Nuclear Magnetic Resonance spectroscopy
X-ray Photoelectron Spectroscopy
Project ANR
Laboratory of excellency for electrochemical energy storage
Origine
Importé de halUnités de recherche