Afficher la notice abrégée

hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierTechnocentre, Renault SAS
dc.contributor.authorCOURBARON, Gwenaëlle
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorNUERNBERG, Rafael
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierCIC ENERGIGUNE - Parque Tecnol Alava
hal.structure.identifierAdvanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
dc.contributor.authorSEVILLANO, Jon
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorCHUNG, U-Chan
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
dc.contributor.authorDUTTINE, Mathieu
hal.structure.identifierPlateforme Aquitaine de Caractérisation des Matériaux [PLACAMAT]
dc.contributor.authorLABRUGÈRE-SARROSTE, Christine
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierRéseau sur le stockage électrochimique de l'énergie [RS2E]
hal.structure.identifierAdvanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
dc.contributor.authorOLCHOWKA, Jacob
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierRéseau sur le stockage électrochimique de l'énergie [RS2E]
hal.structure.identifierAdvanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
dc.contributor.authorCARLIER, Dany
hal.structure.identifierTechnocentre, Renault SAS
dc.contributor.authorDELPUECH, Nathalie
hal.structure.identifierInstitut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
hal.structure.identifierRéseau sur le stockage électrochimique de l'énergie [RS2E]
hal.structure.identifierAdvanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
dc.contributor.authorCROGUENNEC, Laurence
dc.date.issued2024
dc.identifier.issn0925-8388
dc.description.abstractEnOne of the most promising and developed disruptive technology of energy storage for the future is all solid-state batteries. The NASICON phase LATP (Li1.3Al0.3Ti1.7(PO4)3) is widely studied especially thanks to its high ionic conductivity and mechanical strength. However, high temperature densification is required to obtain a dense and conductive material. Here we explore the fast sintering by Spark Plasma Sintering (SPS) of submicronic LATP particles, and the impact of the heating rate on the physico-chemical and transport properties of the pristine powder. High-speed rate for the sintering process induces particles’ growth, avoiding any reduction of titanium. The impurity AlPO4 plays a major role on the conductivity, depending on its content but also on its distribution within the composite, either as a coating (surface modification) or as crystalline particles within the grain boundaries. An intimate understanding of the ceramic composites was achieved using combination of advanced characterization techniques to get a multi-scale description of the material, from the pristine to the sintered states, from the surface to the bulk, and from the atomic long range to the local scales. Sharing these fundamental results is essential, with among other motivations, the spreading of our interpretation of complex spectroscopic results (Electronic Spin Resonance (ESR) spectroscopy, solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and X-ray Photoelectron Spectroscopy (XPS)), key for characterization of reactivities at interfaces in this work and in others.
dc.description.sponsorshipLaboratory of excellency for electrochemical energy storage - ANR-10-LABX-0076
dc.language.isoen
dc.publisherElsevier
dc.subject.enNASICON structure
dc.subject.enPhosphate inorganic electrolyte
dc.subject.enSpark plasma sintering
dc.subject.enMulti-scale reactivity
dc.subject.enConductivity
dc.subject.enElectronic Spin Resonance spectroscopy
dc.subject.enSolid-state Nuclear Magnetic Resonance spectroscopy
dc.subject.enX-ray Photoelectron Spectroscopy
dc.title.enMulti-scale characterization of submicronic NASICON-type solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 degraded by spark plasma sintering
dc.typeArticle de revue
dc.subject.halChimie/Matériaux
bordeaux.journalJournal of Alloys and Compounds
bordeaux.page17406
bordeaux.volume985
bordeaux.peerReviewedoui
hal.identifierhal-04534068
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04534068v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Alloys%20and%20Compounds&rft.date=2024&rft.volume=985&rft.spage=17406&rft.epage=17406&rft.eissn=0925-8388&rft.issn=0925-8388&rft.au=COURBARON,%20Gwena%C3%ABlle&NUERNBERG,%20Rafael&SEVILLANO,%20Jon&CHUNG,%20U-Chan&DUTTINE,%20Mathieu&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée