Sur quelques extensions au cadre Banachique de la notion d'opérateur de Hilbert-Schmidt
Langue
fr
Article de revue
Ce document a été publié dans
Studia Mathematica. 2015, vol. 3, n° 227, p. 192-218
Instytut Matematyczny - Polska Akademii Nauk
Résumé en anglais
In this work we discuss several ways to extend to the context of Banach spaces the notion of Hilbert-Schmidt operators: $p$-summing operators, $\gamma$-summing or $\gamma$-radonifying operators, weakly $*1$-nuclear operators ...Lire la suite >
In this work we discuss several ways to extend to the context of Banach spaces the notion of Hilbert-Schmidt operators: $p$-summing operators, $\gamma$-summing or $\gamma$-radonifying operators, weakly $*1$-nuclear operators and classes of operators defined via factorization properties. We introduce the class $PS_2(E; F)$ of pre-Hilbert-Schmidt operators as the class of all operators $u:E\to F$ such that $w\circ u \circ v$ is Hilbert-Schmidt for every bounded operator $v: H_1\to E$ and every bounded operator $w:F\to H_2$, where $H_1$ et $H_2$ are Hilbert spaces. Besides the trivial case where one of the spaces $E$ or $F$ is a "Hilbert-Schmidt space", this space seems to have been described only in the easy situation where one of the spaces $E$ or $F$ is a Hilbert space.< Réduire
Mots clés en anglais
Grothendieck's inequality
Banach spaces
Hilbert-Schmidt operators
$p$-summing operators
almost summing operators
$\gamma$-summing operators
$\gamma$-radonifying operators
Project ANR
Aux frontières de l'analyse Harmonique - ANR-12-BS01-0013
Origine
Importé de halUnités de recherche