Adaptive regularization of the NL-means for video denoising
SUTOUR, Camille
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Leer más >
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
SUTOUR, Camille
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Idioma
en
Communication dans un congrès
Este ítem está publicado en
IEEE International Conference on Image Processing 2014, IEEE International Conference on Image Processing 2014, IEEE International Conference on Image Processing 2014, 2014-10-27, Paris. 2014-10-27p. 5 p.
Resumen en inglés
We derive a denoising method based on an adaptive regularization of the non-local means. The NL-means reduce noise by using the redundancy in natural images. They compute a weighted average of pixels whose surroundings are ...Leer más >
We derive a denoising method based on an adaptive regularization of the non-local means. The NL-means reduce noise by using the redundancy in natural images. They compute a weighted average of pixels whose surroundings are close. This method performs well but it suffers from residual noise on singular structures. We use the weights computed in the NL-means as a measure of performance of the denoising process. These weights balance the data-fidelity term in an adapted ROF model, in order to locally perform adaptive TV regularization. Besides, this model can be adapted to different noise statistics and a fast resolution can be computed in the general case of the exponential family. We adapt this model to video denoising by using spatio-temporal patches. Compared to spatial patches, they offer better temporal stability, while the adaptive TV regularization corrects the residual noise observed around moving structures.< Leer menos
Orígen
Importado de HalCentros de investigación