Mean curvature bounds and eigenvalues of Robin Laplacians
POPOFF, Nicolas
Institut de Mathématiques de Bordeaux [IMB]
Centre de Physique Théorique - UMR 7332 [CPT]
Institut de Mathématiques de Bordeaux [IMB]
Centre de Physique Théorique - UMR 7332 [CPT]
POPOFF, Nicolas
Institut de Mathématiques de Bordeaux [IMB]
Centre de Physique Théorique - UMR 7332 [CPT]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centre de Physique Théorique - UMR 7332 [CPT]
Langue
en
Article de revue
Ce document a été publié dans
Calculus of Variations and Partial Differential Equations. 2015, vol. 54, p. 1947-1961
Springer Verlag
Résumé en anglais
We consider the Laplacian with attractive Robin boundary conditions, \[ Q^\Omega_\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text{ on } \partial\Omega, \] in a class of bounded smooth domains $\Omega ...Lire la suite >
We consider the Laplacian with attractive Robin boundary conditions, \[ Q^\Omega_\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text{ on } \partial\Omega, \] in a class of bounded smooth domains $\Omega \in\mathbb{R}^\nu$; here $n$ is the outward unit normal and $\alpha>0$ is a constant. We show that for each $j\in\mathbb{N}$ and $\alpha\to+\infty$, the $j$th eigenvalue $E_j(Q^\Omega_\alpha)$ has the asymptotics \[ E_j(Q^\Omega_\alpha)=-\alpha^2 -(\nu-1)H_\mathrm{max}(\Omega)\,\alpha+{\mathcal O}(\alpha^{2/3}), \] where $H_\mathrm{max}(\Omega)$ is the maximum mean curvature at $\partial \Omega$. The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of $H_\mathrm{max}$. In particular, we show that the ball is the strict minimizer of $H_\mathrm{max}$ among the smooth star-shaped domains of a given volume, which leads to the following result: if $B$ is a ball and $\Omega$ is any other star-shaped smooth domain of the same volume, then for any fixed $j\in\mathbb{N}$ we have $E_j(Q^B_\alpha)>E_j(Q^\Omega_\alpha)$ for large $\alpha$. An open question concerning a larger class of domains is formulated.< Réduire
Origine
Importé de halUnités de recherche