On torsors under elliptic curves and Serre's pro-algebraic structures
Langue
en
Article de revue
Ce document a été publié dans
Mathematische Zeitschrift. 2014, vol. 277, n° 1-2, p. 91-147
Springer
Résumé en anglais
Let $K$ be a local field with algebraically closed residue field and $X_K$ a torsor under an elliptic curve $J_K$ over $K$. Let $X$ be a proper minimal regular model of $X_K$ over the ring of integers of $K$ and $J$ the ...Lire la suite >
Let $K$ be a local field with algebraically closed residue field and $X_K$ a torsor under an elliptic curve $J_K$ over $K$. Let $X$ be a proper minimal regular model of $X_K$ over the ring of integers of $K$ and $J$ the identity component of the Néron model of $J_K$. We study the canonical morphism $q\colon \mathrm{Pic}^{0}_{X/S}\to J$ which extends the biduality isomorphism on generic fibres. We show that $q$ is pro-algebraic in nature with a construction that recalls Serre's work on local class field theory. Furthermore we interpret our results in relation to Shafarevich's duality theory for torsors under abelian varieties.< Réduire
Origine
Importé de halUnités de recherche