Complétion de matrice de rang faible probabiliste à l'aide d'algorithmes de régularisation spectrale adaptatifs
TODESCHINI, Adrien
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
TODESCHINI, Adrien
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
fr
Communication dans un congrès
Ce document a été publié dans
46e Journées de Statistique, 2014-06, Rennes. 2014-06
Résumé
Nous proposons une nouvelle classe d'algorithmes pour la complétion de matrice de rang faible. Notre approche s'appuie sur de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En ...Lire la suite >
Nous proposons une nouvelle classe d'algorithmes pour la complétion de matrice de rang faible. Notre approche s'appuie sur de nouvelles fonctions de pénalité sur les valeurs singulières de la matrice de rang faible. En exploitant une représentation basée sur un modèle de mélange de cette pénalité, nous montrons qu'un ensemble de variables latentes convenablement choisi permet de dériver un algorithme EM pour obtenir une estimation du Maximum A Posteriori de la matrice de rang faible complétée. L'algorithme résultant est un algorithme à seuillage doux itératif qui adapte de manière itérative les coefficients de réduction associés aux valeurs singulières.< Réduire
Origine
Importé de halUnités de recherche