Implementing cryptographic pairings at standard security levels
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ENGE, Andreas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Security, Privacy, and Applied Cryptography Engineering, 2014-10-18, Pune. vol. 8804, p. 28-46
Springer
Résumé en anglais
This study reports on an implementation of cryptographic pairings in a general purpose computer algebra system. For security levels equivalent to the different AES flavours, we exhibit suitable curves in parametric families ...Lire la suite >
This study reports on an implementation of cryptographic pairings in a general purpose computer algebra system. For security levels equivalent to the different AES flavours, we exhibit suitable curves in parametric families and show that optimal ate and twisted ate pairings exist and can be efficiently evaluated. We provide a correct description of Miller's algorithm for signed binary expansions such as the NAF and extend a recent variant due to Boxall et al. to addition-subtraction chains. We analyse and compare several algorithms proposed in the literature for the final exponentiation. Finally, we give recommendations on which curve and pairing to choose at each security level.< Réduire
Mots clés en anglais
pairings
implementation
elliptic curve cryptology
Projet Européen
Algorithmic Number Theory in Computer Science
Origine
Importé de halUnités de recherche