Riesz transforms of the Hodge-de Rham Laplacian on Riemannian manifolds
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $M$ be a complete non-compact Riemannian manifold satisfying the doubling volume property. Let $\overrightarrow{\Delta}$ be the Hodge-de Rham Laplacian acting on $1$-differential forms. According to the Bochner formula, ...Lire la suite >
Let $M$ be a complete non-compact Riemannian manifold satisfying the doubling volume property. Let $\overrightarrow{\Delta}$ be the Hodge-de Rham Laplacian acting on $1$-differential forms. According to the Bochner formula, $\overrightarrow{\Delta}=\nabla^*\nabla+R_+-R_-$ where $R_+$ and $R_-$ are respectively the positive and negative part of the Ricci curvature and $\nabla$ is the Levi-Civita connection. We study the boundedness of the Riesz transform $d^*(\overrightarrow{\Delta})^{-\frac{1}{2}}$ from $L^p(\Lambda^1T^*M)$ to $L^p(M)$ and of the Riesz transform $d(\overrightarrow{\Delta})^{-\frac{1}{2}}$ from $L^p(\Lambda^1T^*M)$ to $L^p(\Lambda^2T^*M)$. We prove that, if the heat kernel on functions $p_t(x,y)$ satisfies a Gaussian upper bound and if the negative part $R_-$ of the Ricci curvature is $\epsilon$-sub-critical for some $\epsilon\in[0,1)$, then $d^*(\overrightarrow{\Delta})^{-\frac{1}{2}}$ is bounded from $L^p(\Lambda^1T^*M)$ to $L^p(M)$ and $d(\overrightarrow{\Delta})^{-\frac{1}{2}}$ is bounded from $L^p(\Lambda^1T^*M)$ to $L^p(\Lambda^2T^* M)$ for $p\in(p_0',2]$ where $p_0>2$ depends on $\epsilon$ and on a constant appearing in the doubling volume property. A duality argument gives the boundedness of the Riesz transform $d(\Delta)^{-\frac{1}{2}}$ from $L^p(M)$ to $L^p(\Lambda^1T^*M)$ for $p\in [2,p_0)$ where $\Delta$ is the non-negative Laplace-Beltrami operator. We also give a condition on $R_-$ to be $\epsilon$-sub-critical under both analytic and geometric assumptions.< Réduire
Mots clés en anglais
Riemannian manifolds
Riesz transforms
Hodge- de Rham Laplacian
Riemannian manifolds.
Origine
Importé de halUnités de recherche