Totally indefinite Euclidean quaternion fields
CERRI, Jean-Paul
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
CERRI, Jean-Paul
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
LEZOWSKI, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Article de revue
Ce document a été publié dans
Acta Arithmetica. 2014, vol. 165, n° 2, p. 181-200
Instytut Matematyczny PAN
Résumé en anglais
We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish the complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an ...Lire la suite >
We study the Euclidean property for totally indefinite quaternion fields. In particular, we establish the complete list of norm-Euclidean such fields over imaginary quadratic number fields. This enables us to exhibit an example which gives a negative answer to a question asked by Eichler. The proofs are both theoretical and algorithmic.< Réduire
Projet Européen
Algorithmic Number Theory in Computer Science
Origine
Importé de halUnités de recherche