How unique is Lovász's theta function?
PÊCHER, Arnaud
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
WAGLER, Annegret K.
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
Voir plus >
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
PÊCHER, Arnaud
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
WAGLER, Annegret K.
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
< Réduire
Laboratoire d'Informatique, de Modélisation et d'optimisation des Systèmes [LIMOS]
Langue
en
Communication dans un congrès
Ce document a été publié dans
VIII ALIO/EURO Workshop on Applied Combinatorial Optimization, 2014-12-08, Montevideo. 2014-12-08
Résumé en anglais
The famous Lovász's ϑ function is computable in polynomial time for every graph, as a semi-definite program (Grötschel, Lovász and Schrijver, 1981). The chromatic number and the clique number of every perfect graph G are ...Lire la suite >
The famous Lovász's ϑ function is computable in polynomial time for every graph, as a semi-definite program (Grötschel, Lovász and Schrijver, 1981). The chromatic number and the clique number of every perfect graph G are computable in polynomial time. Despite numerous efforts since the last three decades, stimulated by the Strong Perfect Graph Theo-rem (Chudnovsky, Robertson, Seymour and Thomas, 2006), no combinatorial proof of this result is known. In this work, we try to understand why the "key properties" of Lovász's ϑ function make it so "unique". We introduce an infinite set of convex functions, which includes the clique number ω and ϑ . This set includes a sequence of linear programs which are monotone increasing and converging to ϑ . We provide some evidences that ϑ is the unique function in this setting allowing to compute the chromatic number of perfect graphs in polynomial time.< Réduire
Mots clés en anglais
semi-definite programming
Theta number
Origine
Importé de halUnités de recherche