Conditional quantile estimation using optimal quantization: a numerical study
CHARLIER, Isabelle
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
PAINDAVEINE, Davy
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHARLIER, Isabelle
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
PAINDAVEINE, Davy
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
European Center for Advanced Research in Economics and Statistics [ECARES]
Département de Mathématique [Bruxelles] [ULB]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Communication dans un congrès
Ce document a été publié dans
International Conference on Computational Statistics (COMPSTAT'2014), 2014-08-19, Genève.
Résumé en anglais
We construct a nonparametric estimator of conditional quantiles of Y given X = x using optimal quantization. Conditional quantiles are particularly of interest when the condi-tional mean is not representative of the impact ...Lire la suite >
We construct a nonparametric estimator of conditional quantiles of Y given X = x using optimal quantization. Conditional quantiles are particularly of interest when the condi-tional mean is not representative of the impact of the covariable X on the dependent variable Y . L p -norm optimal quantization is a discretizing method used since the 1950's in engineer-ing. It allows to construct the best approximation of a continuous law with a discrete law with support of size N . The aim of this work is then to use optimal quantization to construct con-ditional quantile estimators. We study the convergence of the approximation (N → ∞) and the consistency of the resulting estimator for this fixed-N approximation. This estimator was implemented in R in order to evaluate the numerical behavior and to compare it with existing methods.< Réduire
Mots clés en anglais
Nonparametric estimation
Conditional quantile
Optimal quantization
Origine
Importé de halUnités de recherche