Optimized Transmission Conditions for Domain Decomposition Methods and Helmholtz Equation. Application to Higher Order Finite Element Methods
COLLINO, Francis
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
DURUFLÉ, Marc
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
COLLINO, Francis
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique [CERFACS]
DURUFLÉ, Marc
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Communication dans un congrès
Ce document a été publié dans
International Conference on Spectral and High Order Methods 2014, 2014-06-23, Salt Lake City.
Résumé en anglais
Domain decomposition methods for solving Helmholtz equation are considered. Such methods rely on transmission conditions set on the interfaces between subdomains. The convergence of the iterative algorithm used to solve ...Lire la suite >
Domain decomposition methods for solving Helmholtz equation are considered. Such methods rely on transmission conditions set on the interfaces between subdomains. The convergence of the iterative algorithm used to solve the associated linear system depends on these transmission conditions. Optimized transmission conditions (such as proposed in [1]) usually rely on transparent boundary conditions or local operators that are an approximation of the exact transparent boundary condition. In this talk, non-local optimized transmission conditions based on Riesz potentials as detailed in [2] are studied. The non-local operators can be replaced by quasi-local operators, and the obtained rate of convergence is independent of the mesh size. These conditions are applied to higher order finite element methods.< Réduire
Origine
Importé de halUnités de recherche