CM-Points on Straight Lines
ALLOMBERT, Bill
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
ALLOMBERT, Bill
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Chapitre d'ouvrage
Ce document a été publié dans
Analytic Number Theory : In Honor of Helmut Maier’s 60th Birthday, Analytic Number Theory : In Honor of Helmut Maier’s 60th Birthday. 2015
Résumé en anglais
We prove that, with "obvious" exceptions, a CM-point (j(\tau),j(\tau')) cannot belong to a straight line in C^2 defined over Q. This generalizes a result of K\"uhne, who proved this for the line x+y=1.
We prove that, with "obvious" exceptions, a CM-point (j(\tau),j(\tau')) cannot belong to a straight line in C^2 defined over Q. This generalizes a result of K\"uhne, who proved this for the line x+y=1.< Réduire
Projet Européen
Algorithmic Number Theory in Computer Science
Origine
Importé de halUnités de recherche