A Fokker-Planck model of the Boltzmann equation with correct Prandtl number
MATHIAUD, Julien
Centre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
Institut de Mathématiques de Bordeaux [IMB]
MIEUSSENS, Luc
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
MATHIAUD, Julien
Centre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
Institut de Mathématiques de Bordeaux [IMB]
MIEUSSENS, Luc
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Statistical Physics. 2016, vol. 162, n° 2, p. 397-414
Springer Verlag
Résumé en anglais
We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics. This is obtained by replacing the diffusion coefficient (which is ...Lire la suite >
We propose an extension of the Fokker-Planck model of the Boltzmann equation to get a correct Prandtl number in the Compressible Navier-Stokes asymptotics. This is obtained by replacing the diffusion coefficient (which is the equilibrium temperature) by a non diagonal temperature tensor, like the Ellipsoidal-Statistical model (ES) is obtained from the Bathnagar-Gross-Krook model (BGK) of the Boltzmann equation. Our model is proved to satisfy the properties of conservation and a H-theorem. A Chapman-Enskog analysis and two numerical tests show that a correct Prandtl number of 2/3 can be obtained.< Réduire
Mots clés en anglais
H-theorem
Prandtl number
Fokker-Planck model
Ellipsoidal-Statistical model
Origine
Importé de halUnités de recherche