A zero-sqrt(5)/ 2 law for cosine families
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $a \in \R,$ and let $k(a)$ be the largest constant such that $sup\vert cos(na)-cos(nb)\vert < k(a)$ for $b\in \R$ implies that $b \in \pm a+2\pi\Z. $ We show thatif a cosine sequence $(C(n))_{n\in \Z}$ with values in ...Lire la suite >
Let $a \in \R,$ and let $k(a)$ be the largest constant such that $sup\vert cos(na)-cos(nb)\vert < k(a)$ for $b\in \R$ implies that $b \in \pm a+2\pi\Z. $ We show thatif a cosine sequence $(C(n))_{n\in \Z}$ with values in a Banach algebra $A$ satisfies $sup_{n\ge 1}\Vert C(n) -cos(na).1_A\Vert < k(a),$ then $C(n)=cos(na)$ for $n\in \Z.$ Since${\sqrt 5\over 2} \le k(a) \le {8\over 3\sqrt 3}$ for every $a \in \R,$ this shows that if some cosine family $(C(g))_{g\in G}$ over an abelian group $G$ in a Banach algebra satisfies $sup_{g\in G}\Vert C(g)-c(g)\Vert < {\sqrt 5\over 2}$ for some scalar cosine family $(c(g))_{g\in G},$ then $C(g)=c(g)$ for $g\in G,$ and the constant ${\sqrt 5\over 2}$ is optimal. We also describe the set of all real numbers $a \in [0,\pi]$ satisfying $k(a)\le {3\over 2}.$< Réduire
Mots clés en anglais
cosine sequence
cosine family
cyclotomic polynomial
Kronecker's theorem
Origine
Importé de halUnités de recherche