Constructive approximation in de Branges-Rovnyak spaces
Idioma
en
Article de revue
Este ítem está publicado en
Constructive Approximation. 2016-09-21, vol. 44, n° 2, p. 269-281
Springer Verlag
Resumen en inglés
In most classical holomorphic function spaces on the unit disk, a function $f$ can be approximated in the norm of the space by its dilates $f_r(z):=f(rz)~(r < 1)$.We show that this is \emph{not} the case for the de ...Leer más >
In most classical holomorphic function spaces on the unit disk, a function $f$ can be approximated in the norm of the space by its dilates $f_r(z):=f(rz)~(r < 1)$.We show that this is \emph{not} the case for the de Branges--Rovnyak spaces $\cH(b)$. More precisely, we give an example of a non-extreme point $b$ of the unit ball of $H^\infty$ and a function $f\in\cH(b)$ such that $\lim_{r\to1^-}\|f_r\|_{\cH(b)}=\infty$.It is known that, if $b$ is a non-extreme point of the unit ball of $H^\infty$, then polynomials are dense in $\cH(b)$. We give the first constructive proof of this fact.< Leer menos
Orígen
Importado de HalCentros de investigación