Solvability analysis and numerical approximation of linearized cardiac electromechanics
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
QUARTERONI, Alfio
Chair of Modelling and Scientific Computing [CMCS]
Modeling and Scientific Computing [Milano] [MOX]
Voir plus >
Chair of Modelling and Scientific Computing [CMCS]
Modeling and Scientific Computing [Milano] [MOX]
ANDREIANOV, Boris
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
Laboratoire de Mathématiques et Physique Théorique [LMPT]
Laboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
QUARTERONI, Alfio
Chair of Modelling and Scientific Computing [CMCS]
Modeling and Scientific Computing [Milano] [MOX]
Chair of Modelling and Scientific Computing [CMCS]
Modeling and Scientific Computing [Milano] [MOX]
RUIZ BAIER, Ricardo
Chair of Modelling and Scientific Computing [CMCS]
Institut des sciences de la terre [Lausanne] [ISTE]
< Réduire
Chair of Modelling and Scientific Computing [CMCS]
Institut des sciences de la terre [Lausanne] [ISTE]
Langue
en
Article de revue
Ce document a été publié dans
Mathematical Models and Methods in Applied Sciences. 2015, vol. 25, p. 959-993
World Scientific Publishing
Résumé en anglais
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The ...Lire la suite >
This paper is concerned with the mathematical analysis of a coupled elliptic-parabolic system modeling the interaction between the propagation of electric potential and subsequent deformation of the cardiac tissue. The problem consists in a reaction-diffusion system governing the dynamics of ionic quantities, intra and extra-cellular potentials, and the linearized elasticity equations are adopted to describe the motion of an incompressible material. The coupling between muscle contraction, biochemical reactions and electric activity is introduced with a so-called active strain decomposition framework, where the material gradient of deformation is split into an active (electrophysiology-dependent) part and an elastic (passive) one. Under the assumption of linearized elastic behavior and a truncation of the updated nonlinear diffusivities, we prove existence of weak solutions to the underlying coupled reaction-diffusion system and uniqueness of regular solutions. The proof of existence is based on a combination of parabolic regularization, the Faedo-Galerkin method, and the monotonicity-compactness method of J.L. Lions. A finite element formulation is also introduced, for which we establish existence of discrete solutions and show convergence to a weak solution of the original problem. We close with a numerical example illustrating the convergence of the method and some features of the model.< Réduire
Mots clés en anglais
Finite element approximation
Weak compactness method
Weak-strong uniqueness
Electro--mechanical coupling
Bidomain equations
Active deformation
Weak solutions
Convergence of approximations
Projet Européen
ERC-2008-AdG 227058, MATHCARD: Mathematical Modelling and Simulation of the Cardiovascular System
Origine
Importé de halUnités de recherche