Arithmetic on Abelian and Kummer Varieties
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire International de Recherche en Informatique et Mathématiques Appliquées [LIRIMA]
Langue
en
Article de revue
Ce document a été publié dans
Finite Fields and Their Applications. 2016-05, vol. 39, p. 130-158
Elsevier
Résumé en anglais
A Kummer variety is the quotient of an abelian variety by the automorphism $(-1)$ acting on it. Kummer varieties can be seen as a higher dimensional generalisation of the $x$-coordinate representation of a point of an ...Lire la suite >
A Kummer variety is the quotient of an abelian variety by the automorphism $(-1)$ acting on it. Kummer varieties can be seen as a higher dimensional generalisation of the $x$-coordinate representation of a point of an elliptic curve given by its Weierstrass model. Although there is no group law on the set of points of a Kummer variety, there remains enough arithmetic to enable the computation of exponentiations via a Montgomery ladder based on differential additions. In this paper, we explain that the arithmetic of a Kummer variety is much richer than usually thought. We describe a set of composition laws which exhaust this arithmetic and show that these laws may turn out to be useful in order to improve certain algorithms. We explain how to compute efficiently these laws in the model of Kummer varieties provided by level $2$ theta functions. We also explain how to recover the full group law of the abelian variety with a representation almost as compact and in many cases as efficient as the level $2$ theta functions model of Kummer varieties.< Réduire
Projet Européen
Algorithmic Number Theory in Computer Science
Project ANR
Espaces de paramètres pour une arithmétique efficace et une évaluation de la sécurité des courbes - ANR-12-BS01-0010
SIM et théorie des couplages pour la sécurité de l'information et des communications - ANR-12-INSE-0014
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
SIM et théorie des couplages pour la sécurité de l'information et des communications - ANR-12-INSE-0014
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche