Subject-level Joint Parcellation-Detection-Estimation in fMRI
CHAARI, Lotfi
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
Voir plus >
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
CHAARI, Lotfi
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications [ENSEEIHT]
DEHAENE-LAMBERTZ, Ghislaine
Neuroimagerie cognitive - Psychologie cognitive expérimentale [UNICOG-U992]
Service NEUROSPIN [NEUROSPIN]
Neuroimagerie cognitive - Psychologie cognitive expérimentale [UNICOG-U992]
Service NEUROSPIN [NEUROSPIN]
CIUCIU, Philippe
Modelling brain structure, function and variability based on high-field MRI data [PARIETAL]
Service NEUROSPIN [NEUROSPIN]
< Réduire
Modelling brain structure, function and variability based on high-field MRI data [PARIETAL]
Service NEUROSPIN [NEUROSPIN]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Brain parcellation is one of the most important issues in functional MRI (fMRI) data analysis. This parcellation allows establishing homogeneous territories that share the same functional properties. This paper presents a ...Lire la suite >
Brain parcellation is one of the most important issues in functional MRI (fMRI) data analysis. This parcellation allows establishing homogeneous territories that share the same functional properties. This paper presents a model-based approach to perform a subject-level parcellation into hemodynamic territories with similar hemodynamic features which are known to vary between brain regions. We specifically investigate the use of the Joint Parcellation-Detection-Estimation (JPDE) model initially proposed in [1] to separate brain regions that match different hemodynamic response function (HRF) profiles. A hierarchical Bayesian model is built and a variational expectation maximiza-tion (VEM) algorithm is deployed to perform inference. A more complete version of the JPDE model is detailed. Validation on synthetic data shows the robustness of this model to varying signal-to-noise ratio (SNR) as well as to different initializations. Our results also demonstrate that good parcellation performance is achieved even though the parcels do not involve the same amount of activation. On real fMRI data acquired in children during a language paradigm, we retrieved a parcellation along the superior temporal sulcus of the left hemisphere that matches the gradient of activation dynamics already reported in the literature.< Réduire
Mots clés en anglais
functional MRI
hemodynamics
Origine
Importé de halUnités de recherche